11 research outputs found

    Potential utility of natural products as regulators of breast cancer-associated aromatase promoters

    Get PDF
    Aromatase, the key enzyme in estrogen biosynthesis, converts androstenedione to estrone and testosterone to estradiol. The enzyme is expressed in various tissues such as ovary, placenta, bone, brain, skin, and adipose tissue. Aromatase enzyme is encoded by a single gene CYP 19A1 and its expression is controlled by tissue-specific promoters. Aromatase mRNA is primarily transcribed from promoter I.4 in normal breast tissue and physiological levels of aromatase are found in breast adipose stromal fibroblasts. Under the conditions of breast cancer, as a result of the activation of a distinct set of aromatase promoters (I.3, II, and I.7) aromatase expression is enhanced leading to local overproduction of estrogen that promotes breast cancer. Aromatase is considered as a potential target for endocrine treatment of breast cancer but due to nonspecific reduction of aromatase activity in other tissues, aromatase inhibitors (AIs) are associated with undesirable side effects such as bone loss, and abnormal lipid metabolism. Inhibition of aromatase expression by inactivating breast tumor-specific aromatase promoters can selectively block estrogen production at the tumor site. Although several synthetic chemical compounds and nuclear receptor ligands are known to inhibit the activity of the tumor-specific aromatase promoters, further development of more specific and efficacious drugs without adverse effects is still warranted. Plants are rich in chemopreventive agents that have a great potential to be used in chemotherapy for hormone dependent breast cancer which could serve as a source for natural AIs. In this brief review, we summarize the studies on phytochemicals such as biochanin A, genistein, quercetin, isoliquiritigenin, resveratrol, and grape seed extracts related to their effect on the activation of breast cancer-associated aromatase promoters and discuss their aromatase inhibitory potential to be used as safer chemotherapeutic agents for specific hormone-dependent breast cancer

    Experimental datasets on the immunohistological assessment of δ-cells in the islet organs of the endocrine pancreas of Japanese medaka (Oryzias latipes) fish exposed to graphene oxide

    No full text
    The datasets of this article present the experimental parameters resulting from the assessment of δ-cells in the islet organs of the endocrine pancreas as a potential biomarker of endocrine disruption (ED) mediated by graphene oxide (GO), using Japanese medaka fish as the model. These datasets support the article “Evaluation of pancreatic δ-cells as a potential target site of graphene oxide toxicity in Japanese medaka (Oryzias latipes) fish”. GO used in the experiments was either obtained from a commercial source or synthesized in the laboratory by us. GO was sonicated for 5 min in ice temperature before application. The experiments were conducted on reproductively active adult fish maintained as a breeding pair (one male and one female) in 500 ml balanced salt solution (BSS) either by immersion (IMR) in GO (20 mg/L) continuously for 96 h with the refreshing of media once in every 24 h, or by a single intraperitoneal (IP) administration of GO (100 µg/g) to both male and female partners. Control fish were maintained in BSS only (IMR experiment), or nanopure water (vehicle) was injected into the peritoneal cavity (IP experiment). The IP experimental fish were anesthetized in MS-222 (100 mg/L in BSS); the injected volume (0.5 µL/10 mg fish) never exceeds 50 µl/fish. After injection, the injected fish were allowed for recovery in clean BSS and after recovery both partners were transferred to 1 L glass jars with 500 mL BSS. During depuration, the media of the breeders refreshed once every 24 h and the eggs were collected. After 21 days, the survived fish were anaesthetized, and the trunk region was preserved in 4% paraformaldehyde in PBS (20 mM) containing 0.05% Tween 20. The phenotypic sex of adult fish was assessed externally by secondary sex characters (fin features) and internally by gonad (testis and ovary) histology. Once the location of pancreas was determined after HE stains, immunohistochemical technique was applied on next few slides using rabbit derived polyclonal antisomatostatin antibody as primary antibody and a commercial kit for colorimetric determination of δ-cells in the islet organs was used. Images were captured using an Olympus CKX53 inverted microscope with DP22 camera and CellSens software. Using imagej software, a minimum 3 images of principal islets and one image of secondary islets were assessed. The immunoreactivity of δ-cells, due to neuron-like appearance and filopodia like processes, enabled us to separate them from other cell types found in the pancreatic islets of medaka. Based on immunoreactivity, we have classified islet cells into three categories; noncommunicating delta cells (NCDC), communicating cells (CC), and non-delta cells (NDC), and expressed as number of cells (NCDC/CC/NDC)/mm2 of islet organs. The nuclear area (µm2) and the linear length of filopodia of NCDCs were also considered for evaluation. Numerical data were analysed by Kruskal-Wallis test followed by Mann-Whitney's test as post hoc test and presented as means  ±  SEM. Statistically significant differences were considered for p ≤ 0.05

    Gene expression profiling and pathway analysis data in MCF-7 and MDA-MB-231 human breast cancer cell lines treated with dioscin

    No full text
    Microarray technology (Human OneArray microarray, phylanxbiotech.com) was used to compare gene expression profiles of non-invasive MCF-7 and invasive MDA-MB-231 breast cancer cells exposed to dioscin (DS), a steroidal saponin isolated from the roots of wild yam, (Dioscorea villosa). Initially the differential expression of genes (DEG) was identified which was followed by pathway enrichment analysis (PEA). Of the genes queried on OneArray, we identified 4641 DEG changed between MCF-7 and MDA-MB-231 cells (vehicle-treated) with cut-off log2 |fold change|≧1. Among these genes, 2439 genes were upregulated and 2002 were downregulated. DS exposure (2.30 μM, 72 h) to these cells identified 801 (MCF-7) and 96 (MDA-MB-231) DEG that showed significant difference when compared with the untreated cells (p<0.05). Within these gene sets, DS was able to upregulate 395 genes and downregulate 406 genes in MCF-7 and upregulate 36 and downregulate 60 genes in MDA-MB-231 cells. Further comparison of DEG between MCF-7 and MDA-MB-231 cells exposed to DS identified 3626 DEG of which 1700 were upregulated and 1926 were down-regulated. Regarding to PEA, 12 canonical pathways were significantly altered between these two cell lines. However, there was no alteration in any of these pathways in MCF-7 cells, while in MDA-MB-231 cells only MAPK pathway showed significant alteration. When PEA comparison was made on DS exposed cells, it was observed that only 2 pathways were significantly affected. Further, we identified the shared DEG, which were targeted by DS and overlapped in both MCF-7 and MDA-MB-231 cells, by intersection analysis (Venn diagram). We found that 7 DEG were overlapped of which six are reported in the database. This data highlight the diverse gene networks and pathways in MCF-7 and MDA-MB-231 human breast cancer cell lines treated with dioscin
    corecore