1,092 research outputs found

    Design of Piezoresistive MEMS Accelerometer with Optimized Device Dimension

    Get PDF
    The advent of microfabrication has given a great impetus to MEMS inertial sensors particularly MEMS automobile sensors. In developing Microsystem technology, FEA has been acknowledged as the most cost and time effective alternative to building a prototype for simulation. Present work focuses on developing mathematical model in order to formulate a design procedure to determine the influence of geometric attributes of a four and an eight beam cross bridged accelerometer for automotive applications pertaining to lower inertial loads ( 2g). The configuration is so chosen to minimize cross-axis sensitivity and temperature variation. The proposed mathematical model takes both mechanical and electrical aspects into consideration. Both accelerometers are doped with p-type (boron diffused) silicon at two ends of its flexures. An optimization based on genetic algorithm has been carried out to determine the best possible geometric configuration while satisfying the specification of automotive inertia sensors. A solid model based on optimized dimensions has been simulated using ANSYS to determine stress, deformation, sensitivity for both configurations followed by validation with analytical results. The two configurations have been compared on the basis of output behaviour and performance parameters, and the obtained results are described in detail

    Multiplicity dependence of strange and multi-strange hadrons in p−-p, p−-Pb and Pb−-Pb collisions at LHC energies using Tsallis-Weibull Formalism

    Full text link
    The transverse momentum (pTp_{T}) distribution of strange hadrons (KS0K_{S}^{0} and Λ\Lambda) and multi-strange hadrons( Ξ\Xi and Ω\Omega) measured in p−-p, p−-Pb, and Pb−-Pb collisions at LHC energies have been studied for different multiplicity classes using Tsallis-Weibull (or q−-Weibull)formalism. The distribution describes the measured pTp_{T} spectra for all multiplicity (or centrality)classes. The multiplicity dependence of the extracted parameters are studied for the mentioned collisions systems. The λ\lambda parameter was observed to increase systematically with the collision multiplicity and follows a mass hierarchy for all collision system. This characteristic feature indicates that λ\lambda can be associated to the strength of collectivity for heavy ion collisions. It can also be related to strength of dynamic effects such as multi-partonic interactions and color reconnections which mimic collectivity in smaller systems. The non-extensive qq parameter is found to be greater than one for all the particles suggesting that the strange particles are emitted from a source which is not fully equilibrated

    Understanding long-range near-side ridge correlations in p−-p collisions using rope hadronization at LHC energies

    Full text link
    The observation of long range ridge-like structure in the near-side region of the two particle Δη−Δϕ\Delta\eta-\Delta\phi correlations as measured by LHC experiments in high multiplicity p−-p collisions indicated towards the presence of collective effects which are similar to that observed in p−-A(nucleon-nucleus) and A−-A (nucleus-nucleus) collisions. The two particle correlation between the charged particles in Δη−Δϕ\Delta\eta-\Delta\phi for p−-p collisions at s\sqrt{s} = 7 TeV and 13 TeV is studied using Pythia 8 event generator within the framework of final-state partonic color reconnection effects as well as the microscopic rope hadronization model. The rope hadronization relies on the formation of ropes due to overlapping of strings in high multiplicity events followed by string shoving. A near side ridge-like structure which is qualitatively similar to the observed ridge in data was observed for high-multiplicity events when the mechanism of rope hadronization (with shoving) was enabled.Comment: 7 pages, 3 captioned figure

    Replay-based Recovery for Autonomous Robotic Vehicles from Sensor Deception Attacks

    Full text link
    Sensors are crucial for autonomous operation in robotic vehicles (RV). Physical attacks on sensors such as sensor tampering or spoofing can feed erroneous values to RVs through physical channels, which results in mission failures. In this paper, we present DeLorean, a comprehensive diagnosis and recovery framework for securing autonomous RVs from physical attacks. We consider a strong form of physical attack called sensor deception attacks (SDAs), in which the adversary targets multiple sensors of different types simultaneously (even including all sensors). Under SDAs, DeLorean inspects the attack induced errors, identifies the targeted sensors, and prevents the erroneous sensor inputs from being used in RV's feedback control loop. DeLorean replays historic state information in the feedback control loop and recovers the RV from attacks. Our evaluation on four real and two simulated RVs shows that DeLorean can recover RVs from different attacks, and ensure mission success in 94% of the cases (on average), without any crashes. DeLorean incurs low performance, memory and battery overheads

    Dynamics of Hot QCD Matter -- Current Status and Developments

    Full text link
    The discovery and characterization of hot and dense QCD matter, known as Quark Gluon Plasma (QGP), remains the most international collaborative effort and synergy between theorists and experimentalists in modern nuclear physics to date. The experimentalists around the world not only collect an unprecedented amount of data in heavy-ion collisions, at Relativistic Heavy Ion Collider (RHIC), at Brookhaven National Laboratory (BNL) in New York, USA, and the Large Hadron Collider (LHC), at CERN in Geneva, Switzerland but also analyze these data to unravel the mystery of this new phase of matter that filled a few microseconds old universe, just after the Big Bang. In the meantime, advancements in theoretical works and computing capability extend our wisdom about the hot-dense QCD matter and its dynamics through mathematical equations. The exchange of ideas between experimentalists and theoreticians is crucial for the progress of our knowledge. The motivation of this first conference named "HOT QCD Matter 2022" is to bring the community together to have a discourse on this topic. In this article, there are 36 sections discussing various topics in the field of relativistic heavy-ion collisions and related phenomena that cover a snapshot of the current experimental observations and theoretical progress. This article begins with the theoretical overview of relativistic spin-hydrodynamics in the presence of the external magnetic field, followed by the Lattice QCD results on heavy quarks in QGP, and finally, it ends with an overview of experiment results.Comment: Compilation of the contributions (148 pages) as presented in the `Hot QCD Matter 2022 conference', held from May 12 to 14, 2022, jointly organized by IIT Goa & Goa University, Goa, Indi

    MUSiC : a model-unspecific search for new physics in proton-proton collisions at root s=13TeV

    Get PDF
    Results of the Model Unspecific Search in CMS (MUSiC), using proton-proton collision data recorded at the LHC at a centre-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 35.9 fb(-1), are presented. The MUSiC analysis searches for anomalies that could be signatures of physics beyond the standard model. The analysis is based on the comparison of observed data with the standard model prediction, as determined from simulation, in several hundred final states and multiple kinematic distributions. Events containing at least one electron or muon are classified based on their final state topology, and an automated search algorithm surveys the observed data for deviations from the prediction. The sensitivity of the search is validated using multiple methods. No significant deviations from the predictions have been observed. For a wide range of final state topologies, agreement is found between the data and the standard model simulation. This analysis complements dedicated search analyses by significantly expanding the range of final states covered using a model independent approach with the largest data set to date to probe phase space regions beyond the reach of previous general searches.Peer reviewe

    Measurement of prompt open-charm production cross sections in proton-proton collisions at root s=13 TeV

    Get PDF
    The production cross sections for prompt open-charm mesons in proton-proton collisions at a center-of-mass energy of 13TeV are reported. The measurement is performed using a data sample collected by the CMS experiment corresponding to an integrated luminosity of 29 nb(-1). The differential production cross sections of the D*(+/-), D-+/-, and D-0 ((D) over bar (0)) mesons are presented in ranges of transverse momentum and pseudorapidity 4 < p(T) < 100 GeV and vertical bar eta vertical bar < 2.1, respectively. The results are compared to several theoretical calculations and to previous measurements.Peer reviewe

    Measurement of B-c(2S)(+) and B-c*(2S)(+) cross section ratios in proton-proton collisions at root s=13 TeV

    Get PDF
    Peer reviewe

    Development and validation of HERWIG 7 tunes from CMS underlying-event measurements

    Get PDF
    This paper presents new sets of parameters (“tunes”) for the underlying-event model of the HERWIG7 event generator. These parameters control the description of multiple-parton interactions (MPI) and colour reconnection in HERWIG7, and are obtained from a fit to minimum-bias data collected by the CMS experiment at s=0.9, 7, and 13Te. The tunes are based on the NNPDF 3.1 next-to-next-to-leading-order parton distribution function (PDF) set for the parton shower, and either a leading-order or next-to-next-to-leading-order PDF set for the simulation of MPI and the beam remnants. Predictions utilizing the tunes are produced for event shape observables in electron-positron collisions, and for minimum-bias, inclusive jet, top quark pair, and Z and W boson events in proton-proton collisions, and are compared with data. Each of the new tunes describes the data at a reasonable level, and the tunes using a leading-order PDF for the simulation of MPI provide the best description of the dat

    Reconstruction of signal amplitudes in the CMS electromagnetic calorimeter in the presence of overlapping proton-proton interactions

    Get PDF
    A template fitting technique for reconstructing the amplitude of signals produced by the lead tungstate crystals of the CMS electromagnetic calorimeter is described. This novel approach is designed to suppress the contribution to the signal of the increased number of out-of-time interactions per beam crossing following the reduction of the accelerator bunch spacing from 50 to 25 ns at the start of Run 2 of the LHC. Execution of the algorithm is sufficiently fast for it to be employed in the CMS high-level trigger. It is also used in the offline event reconstruction. Results obtained from simulations and from Run 2 collision data (2015-2018) demonstrate a substantial improvement in the energy resolution of the calorimeter over a range of energies extending from a few GeV to several tens of GeV.Peer reviewe
    • 

    corecore