147 research outputs found

    The Modified Erikson Psychosocial Stage Inventory.

    Full text link
    A measure of the strength of psychosocial attributes that arise from progression through Erik Erikson's eight stages of development.The Modified Erikson Psychosocial Inventory (MEPSI) is an 80-item, comprehensive measure of psychosocial development based on Eriksonian theory. It was designed to measure the strength of psychosocial attributes that arise from progression through Erik Erikson's eight stages of development. It evolved in response to the apparent lack of a valid and reliable, yet easily administered survey instrument to measure psychosocial attributes in the adult population within the context of Eriksonian developmental theory (See Darling-Fisher & Kline Leidy, 1988 for details of its development). Data supporting its reliability and validity data was published when it was first developed (Leidy & Darling-Fisher, 1995). Over the years, it has been used in numerous research projects in a variety of fields and continues to be requested on a regular basis. The authors are making the MEPSI instrument and its Guidelines for administration and scoring available via this URL to facilitate future research, critique, and revision.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/111746/1/MEPSI.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/111746/3/Darling-Fisher&LeidyMEPSIDevelopment1988.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/111746/4/Leidy&Darling-Fisher, 1995-MEPSI-Reliability&Validity.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/111746/5/MEPSIGUI010.pdfDescription of MEPSI.pdf : MEPSI InstrumentDescription of Darling-Fisher&LeidyMEPSIDevelopment1988.pdf : Publication describibg the Developemtn of the MEPSIDescription of Leidy&Darling-Fisher, 1995-MEPSI-Reliability&Validity.pdf : Article describing the reliability and validity of the MEPSI in diverse samplesDescription of MEPSIGUI010.pdf : Guide for administering and scoring the MEPS

    Designing for Dissemination: Lessons in Message Design from 1-2-3 Pap

    Get PDF
    Despite a large number of evidence-based health communication interventions tested in private, public, and community health settings, there is a dearth of research on successful secondary dissemination of these interventions to other audiences. This article presents the case study of 1-2-3 Pap, a health communication intervention to improve human papillomavirus (HPV) vaccination uptake and Pap testing outcomes in Eastern Kentucky, and explores strategies used to disseminate this intervention to other populations in Kentucky, North Carolina, and West Virginia. Through this dissemination project, we identified several health communication intervention design considerations that facilitated our successful dissemination to these other audiences; these intervention design considerations include (a) developing strategies for reaching other potential audiences, (b) identifying intervention message adaptations that might be needed, and (c) determining the most appropriate means or channels by which to reach these potential future audiences. Using 1-2-3 Pap as an illustrative case study, we describe how careful planning and partnership development early in the intervention development process can improve the potential success of enhancing the reach and effectiveness of an intervention to other audiences beyond the audience for whom the intervention messages were originally designed

    Topical rapamycin inhibits tuberous sclerosis tumor growth in a nude mouse model

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Skin manifestations of Tuberous Sclerosis Complex (TSC) cause significant morbidity. The molecular mechanism underlying TSC is understood and there is evidence that systemic treatment with rapamycin or other mTOR inhibitors may be a useful approach to targeted therapy for the kidney and brain manifestations. Here we investigate topical rapamycin in a mouse model for TSC-related tumors.</p> <p>Methods</p> <p>0.4% and 0.8% rapamycin ointments were applied to nude mice bearing subcutaneous, TSC-related tumors. Topical treatments were compared with injected rapamycin and topical vehicle. Rapamycin levels in blood and tumors were measured to assess systemic drug levels in all cohorts.</p> <p>Results</p> <p>Treatment with topical rapamycin improved survival and reduced tumor growth. Topical rapamycin treatment resulted in systemic drug levels within the known therapeutic range and was not as effective as injected rapamycin.</p> <p>Conclusion</p> <p>Topical rapamycin inhibits TSC-related tumor growth. These findings could lead to a novel treatment approach for facial angiofibromas and other TSC skin lesions.</p

    Sequence Conservation and Functional Constraint on Intergenic Spacers in Reduced Genomes of the Obligate Symbiont Buchnera

    Get PDF
    Analyses of genome reduction in obligate bacterial symbionts typically focus on the removal and retention of protein-coding regions, which are subject to ongoing inactivation and deletion. However, these same forces operate on intergenic spacers (IGSs) and affect their contents, maintenance, and rates of evolution. IGSs comprise both non-coding, non-functional regions, including decaying pseudogenes at varying stages of recognizability, as well as functional elements, such as genes for sRNAs and regulatory control elements. The genomes of Buchnera and other small genome symbionts display biased nucleotide compositions and high rates of sequence evolution and contain few recognizable regulatory elements. However, IGS lengths are highly correlated across divergent Buchnera genomes, suggesting the presence of functional elements. To identify functional regions within the IGSs, we sequenced two Buchnera genomes (from aphid species Uroleucon ambrosiae and Acyrthosiphon kondoi) and applied a phylogenetic footprinting approach to alignments of orthologous IGSs from a total of eight Buchnera genomes corresponding to six aphid species. Inclusion of these new genomes allowed comparative analyses at intermediate levels of divergence, enabling the detection of both conserved elements and previously unrecognized pseudogenes. Analyses of these genomes revealed that 232 of 336 IGS alignments over 50 nucleotides in length displayed substantial sequence conservation. Conserved alignment blocks within these IGSs encompassed 88 Shine-Dalgarno sequences, 55 transcriptional terminators, 5 Sigma-32 binding sites, and 12 novel small RNAs. Although pseudogene formation, and thus IGS formation, are ongoing processes in these genomes, a large proportion of intergenic spacers contain functional sequences

    Complete Genomic Characterization of a Pathogenic A.II Strain of Francisella tularensis Subspecies tularensis

    Get PDF
    Francisella tularensis is the causative agent of tularemia, which is a highly lethal disease from nature and potentially from a biological weapon. This species contains four recognized subspecies including the North American endemic F. tularensis subsp. tularensis (type A), whose genetic diversity is correlated with its geographic distribution including a major population subdivision referred to as A.I and A.II. The biological significance of the A.I – A.II genetic differentiation is unknown, though there are suggestive ecological and epidemiological correlations. In order to understand the differentiation at the genomic level, we have determined the complete sequence of an A.II strain (WY96-3418) and compared it to the genome of Schu S4 from the A.I population. We find that this A.II genome is 1,898,476 bp in size with 1,820 genes, 1,303 of which code for proteins. While extensive genomic variation exists between “WY96” and Schu S4, there is only one whole gene difference. This one gene difference is a hypothetical protein of unknown function. In contrast, there are numerous SNPs (3,367), small indels (1,015), IS element differences (7) and large chromosomal rearrangements (31), including both inversions and translocations. The rearrangement borders are frequently associated with IS elements, which would facilitate intragenomic recombination events. The pathogenicity island duplicated regions (DR1 and DR2) are essentially identical in WY96 but vary relative to Schu S4 at 60 nucleotide positions. Other potential virulence-associated genes (231) varied at 559 nucleotide positions, including 357 non-synonymous changes. Molecular clock estimates for the divergence time between A.I and A.II genomes for different chromosomal regions ranged from 866 to 2131 years before present. This paper is the first complete genomic characterization of a member of the A.II clade of Francisella tularensis subsp. tularensis

    Sloan Digital Sky Survey IV: mapping the Milky Way, nearby galaxies, and the distant universe

    Get PDF
    We describe the Sloan Digital Sky Survey IV (SDSS-IV), a project encompassing three major spectroscopic programs. The Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2) is observing hundreds of thousands of Milky Way stars at high resolution and high signal-to-noise ratios in the near-infrared. The Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey is obtaining spatially resolved spectroscopy for thousands of nearby galaxies (median ). The extended Baryon Oscillation Spectroscopic Survey (eBOSS) is mapping the galaxy, quasar, and neutral gas distributions between and 3.5 to constrain cosmology using baryon acoustic oscillations, redshift space distortions, and the shape of the power spectrum. Within eBOSS, we are conducting two major subprograms: the SPectroscopic IDentification of eROSITA Sources (SPIDERS), investigating X-ray AGNs and galaxies in X-ray clusters, and the Time Domain Spectroscopic Survey (TDSS), obtaining spectra of variable sources. All programs use the 2.5 m Sloan Foundation Telescope at the Apache Point Observatory; observations there began in Summer 2014. APOGEE-2 also operates a second near-infrared spectrograph at the 2.5 m du Pont Telescope at Las Campanas Observatory, with observations beginning in early 2017. Observations at both facilities are scheduled to continue through 2020. In keeping with previous SDSS policy, SDSS-IV provides regularly scheduled public data releases; the first one, Data Release 13, was made available in 2016 July

    Sloan Digital Sky Survey IV: Mapping the Milky Way, Nearby Galaxies, and the Distant Universe

    Get PDF
    We describe the Sloan Digital Sky Survey IV (SDSS-IV), a project encompassing three major spectroscopic programs. The Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2) is observing hundreds of thousands of Milky Way stars at high resolution and high signal-to-noise ratios in the near-infrared. The Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey is obtaining spatially resolved spectroscopy for thousands of nearby galaxies (median z0.03z\sim 0.03). The extended Baryon Oscillation Spectroscopic Survey (eBOSS) is mapping the galaxy, quasar, and neutral gas distributions between z0.6z\sim 0.6 and 3.5 to constrain cosmology using baryon acoustic oscillations, redshift space distortions, and the shape of the power spectrum. Within eBOSS, we are conducting two major subprograms: the SPectroscopic IDentification of eROSITA Sources (SPIDERS), investigating X-ray AGNs and galaxies in X-ray clusters, and the Time Domain Spectroscopic Survey (TDSS), obtaining spectra of variable sources. All programs use the 2.5 m Sloan Foundation Telescope at the Apache Point Observatory; observations there began in Summer 2014. APOGEE-2 also operates a second near-infrared spectrograph at the 2.5 m du Pont Telescope at Las Campanas Observatory, with observations beginning in early 2017. Observations at both facilities are scheduled to continue through 2020. In keeping with previous SDSS policy, SDSS-IV provides regularly scheduled public data releases; the first one, Data Release 13, was made available in 2016 July

    Sloan Digital Sky Survey IV : mapping the Milky Way, nearby galaxies, and the distant universe

    Get PDF
    We describe the Sloan Digital Sky Survey IV (SDSS-IV), a project encompassing three major spectroscopic programs. The Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2) is observing hundreds of thousands of Milky Way stars at high resolution and high signal-to-noise ratios in the near-infrared. The Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey is obtaining spatially resolved spectroscopy for thousands of nearby galaxies (median z ~ 0.03). The extended Baryon Oscillation Spectroscopic Survey (eBOSS) is mapping the galaxy, quasar, and neutral gas distributions between z ~ 0.6 and 3.5 to constrain cosmology using baryon acoustic oscillations, redshift space distortions, and the shape of the power spectrum. Within eBOSS, we are conducting two major subprograms: the SPectroscopic IDentification of eROSITA Sources (SPIDERS), investigating X-ray AGNs and galaxies in X-ray clusters, and the Time Domain Spectroscopic Survey (TDSS), obtaining spectra of variable sources. All programs use the 2.5 m Sloan Foundation Telescope at the Apache Point Observatory; observations there began in Summer 2014. APOGEE-2 also operates a second near-infrared spectrograph at the 2.5 m du Pont Telescope at Las Campanas Observatory, with observations beginning in early 2017. Observations at both facilities are scheduled to continue through 2020. In keeping with previous SDSS policy, SDSS-IV provides regularly scheduled public data releases; the first one, Data Release 13, was made available in 2016 July
    corecore