107 research outputs found

    Nod2 Suppresses Borrelia burgdorferi Mediated Murine Lyme Arthritis and Carditis through the Induction of Tolerance

    Get PDF
    The internalization of Borrelia burgdorferi, the causative agent of Lyme disease, by phagocytes is essential for an effective activation of the immune response to this pathogen. The intracellular, cytosolic receptor Nod2 has been shown to play varying roles in either enhancing or attenuating inflammation in response to different infectious agents. We examined the role of Nod2 in responses to B. burgdorferi. In vitro stimulation of Nod2 deficient bone marrow derived macrophages (BMDM) resulted in decreased induction of multiple cytokines, interferons and interferon regulated genes compared with wild-type cells. However, B. burgdorferi infection of Nod2 deficient mice resulted in increased rather than decreased arthritis and carditis compared to control mice. We explored multiple potential mechanisms for the paradoxical response in in vivo versus in vitro systems and found that prolonged stimulation with a Nod2 ligand, muramyl dipeptide (MDP), resulted in tolerance to stimulation by B. burgdorferi. This tolerance was lost with stimulation of Nod2 deficient cells that cannot respond to MDP. Cytokine patterns in the tolerance model closely paralleled cytokine profiles in infected Nod2 deficient mice. We propose a model where Nod2 has an enhancing role in activating inflammation in early infection, but moderates inflammation after prolonged exposure to the organism through induction of tolerance

    Effect of yarn cross-sectional shape on resin flow through inter-yarn gaps in textile reinforcements

    Get PDF
    Axial flow through gaps between aligned straight yarns with realistic cross-sectional shapes, described by power-ellipses, was analysed numerically. At a given fibre volume fraction, equivalent gap permeabilities have a maximum at minimum size of elongated tapering parts of the gap cross-section and a ratio of gap width to height near 1. When the yarn spacing is given in addition to the fibre volume fraction, calculated maximum and minimum values for the equivalent permeability of inter-yarn gaps, which occur at near-rectangular and lenticular cross-sections, differ by factors of up to 3.3. Novel approximations for the shape factor and the hydraulic diameter in Poiseuille flow were derived as a function of the fibre volume fraction, the yarn cross-sectional aspect ratio and the exponent describing the shape of the power-elliptical yarn cross-section. This allows the equivalent gap permeability to be predicted with good accuracy for any fibre volume fraction and yarn cross-section

    Rapid Evaluation in Whole Blood Culture of Regimens for XDR-TB Containing PNU-100480 (Sutezolid), TMC207, PA-824, SQ109, and Pyrazinamide

    Get PDF
    There presently is no rapid method to assess the bactericidal activity of new regimens for tuberculosis. This study examined PNU-100480, TMC207, PA-824, SQ109, and pyrazinamide, singly and in various combinations, against intracellular M. tuberculosis, using whole blood culture (WBA). The addition of 1,25-dihydroxy vitamin D facilitated detection of the activity of TMC207 in the 3-day cultures. Pyrazinamide failed to show significant activity against a PZA-resistant strain (M. bovis BCG), and was not further considered. Low, mid, and high therapeutic concentrations of each remaining drug were tested individually and in a paired checkerboard fashion. Observed bactericidal activity was compared to that predicted by the sum of the effects of individual drugs. Combinations of PNU-100480, TMC207, and SQ109 were fully additive, whereas those including PA-824 were less than additive or antagonistic. The cumulative activities of 2, 3, and 4 drug combinations were predicted based on the observed concentration-activity relationship, published pharmacokinetic data, and, for PNU-100480, published WBA data after oral dosing. The most active regimens, including PNU-100480, TMC207, and SQ109, were predicted to have cumulative activity comparable to standard TB therapy. Further testing of regimens including these compounds is warranted. Measurement of whole blood bactericidal activity can accelerate the development of novel TB regimens

    Human Integrin α3ÎČ1 Regulates TLR2 Recognition of Lipopeptides from Endosomal Compartments

    Get PDF
    Toll-like receptor (TLR)-2/TLR1 heterodimers recognize bacterial lipopeptides and initiate the production of inflammatory mediators. Adaptors and co-receptors that mediate this process, as well as the mechanisms by which these adaptors and co-receptors function, are still being discovered.Using shRNA, blocking antibodies, and fluorescent microscopy, we show that U937 macrophage responses to the TLR2/1 ligand, Pam(3)CSK(4), are dependent upon an integrin, α(3)ÎČ(1). The mechanism for integrin α(3)ÎČ(1) involvement in TLR2/1 signaling is through its role in endocytosis of lipopeptides. Using inhibitors of endosomal acidification/maturation and physical tethering of the ligand, we show that the endocytosis of Pam(3)CSK(4) is necessary for the complete TLR2/1-mediated pro-inflammatory cytokine response. We also show that TLR2/1 signaling from the endosome results in the induction of different inflammatory mediators than TLR2/1 signaling from the plasma membrane.Here we identify integrin α(3)ÎČ(1) as a novel regulator for the recognition of bacterial lipopeptides. We demonstrate that induction of a specific subset of cytokines is dependent upon integrin α(3)ÎČ(1)-mediated endocytosis of the ligand. In addition, we address an ongoing controversy regarding endosomal recognition of bacterial lipopeptides by demonstrating that TLR2/1 signals from within endosomal compartments as well as the plasma membrane, and that downstream responses may differ depending upon receptor localization. We propose that the regulation of endosomal TLR2/1 signaling by integrin α(3)ÎČ(1) serves as a mechanism for modulating inflammatory responses

    Update on neutrophil function in severe inflammation

    Get PDF
    Neutrophils are main players in the effector phase of the host defense against micro-organisms and have a major role in the innate immune response. Neutrophils show phenotypic heterogeneity and functional flexibility, which highlight their importance in regulation of immune function. However, neutrophils can play a dual role and besides their antimicrobial function, deregulation of neutrophils and their hyperactivity can lead to tissue damage in severe inflammation or trauma. Neutrophils also have an important role in the modulation of the immune system in response to severe injury and trauma. In this review we will provide an overview of the current understanding of neutrophil subpopulations and their function during and post-infection and discuss the possible mechanisms of immune modulation by neutrophils in severe inflammation

    Molecular Momentum Transport at Fluid-Solid Interfaces in MEMS/NEMS: A Review

    Get PDF
    This review is focused on molecular momentum transport at fluid-solid interfaces mainly related to microfluidics and nanofluidics in micro-/nano-electro-mechanical systems (MEMS/NEMS). This broad subject covers molecular dynamics behaviors, boundary conditions, molecular momentum accommodations, theoretical and phenomenological models in terms of gas-solid and liquid-solid interfaces affected by various physical factors, such as fluid and solid species, surface roughness, surface patterns, wettability, temperature, pressure, fluid viscosity and polarity. This review offers an overview of the major achievements, including experiments, theories and molecular dynamics simulations, in the field with particular emphasis on the effects on microfluidics and nanofluidics in nanoscience and nanotechnology. In Section 1 we present a brief introduction on the backgrounds, history and concepts. Sections 2 and 3 are focused on molecular momentum transport at gas-solid and liquid-solid interfaces, respectively. Summary and conclusions are finally presented in Section 4

    The FANCM:p.Arg658* truncating variant is associated with risk of triple-negative breast cancer.

    Get PDF
    Breast cancer is a common disease partially caused by genetic risk factors. Germline pathogenic variants in DNA repair genes BRCA1, BRCA2, PALB2, ATM, and CHEK2 are associated with breast cancer risk. FANCM, which encodes for a DNA translocase, has been proposed as a breast cancer predisposition gene, with greater effects for the ER-negative and triple-negative breast cancer (TNBC) subtypes. We tested the three recurrent protein-truncating variants FANCM:p.Arg658*, p.Gln1701*, and p.Arg1931* for association with breast cancer risk in 67,112 cases, 53,766 controls, and 26,662 carriers of pathogenic variants of BRCA1 or BRCA2. These three variants were also studied functionally by measuring survival and chromosome fragility in FANCM -/- patient-derived immortalized fibroblasts treated with diepoxybutane or olaparib. We observed that FANCM:p.Arg658* was associated with increased risk of ER-negative disease and TNBC (OR = 2.44, P = 0.034 and OR = 3.79; P = 0.009, respectively). In a country-restricted analysis, we confirmed the associations detected for FANCM:p.Arg658* and found that also FANCM:p.Arg1931* was associated with ER-negative breast cancer risk (OR = 1.96; P = 0.006). The functional results indicated that all three variants were deleterious affecting cell survival and chromosome stability with FANCM:p.Arg658* causing more severe phenotypes. In conclusion, we confirmed that the two rare FANCM deleterious variants p.Arg658* and p.Arg1931* are risk factors for ER-negative and TNBC subtypes. Overall our data suggest that the effect of truncating variants on breast cancer risk may depend on their position in the gene. Cell sensitivity to olaparib exposure, identifies a possible therapeutic option to treat FANCM-associated tumors
    • 

    corecore