46 research outputs found

    PRINCIPAIS COMPLICAÇÕES Á OBESIDADE NA GESTAÇÃO E SEUS FATORES DE IMPACTOS: REVISÃO DE LITERATURA

    Get PDF
    This study seeks to analyze in detail the impacts of maternal obesity during pregnancy, identify the main complications and risks involved and propose measures that aim to improve maternal and child outcomes, providing a safer and healthier perspective for obese women during this crucial period of their lives. . This is a narrative literature review, a methodological approach that aims for a more complete and integrated analysis of the topic in focus. The research was conducted in a virtual environment, covering several search platforms such as Google Scholar, PubMed and SciELO (Scientific Electronic Library Online). The materials considered included articles, monographs, theses and dissertations available on these scientific platforms. The inclusion criteria included complete works published between 2012 and 2023, related to the proposed topic. On the other hand, the exclusion criteria included works outside this time frame, duplicate materials and those with no relevance to the proposed topic, as well as incomplete documents. The temporal delimitation for included and excluded works provided a clear focus on recent and relevant advances within the analyzed period. This allowed for a more up-to-date analysis aligned with the current state of research in this specific field. In conclusion, obesity during pregnancy presents significant risks and complications for the health of the pregnant woman and the fetus. The work of health professionals is essential in the care and monitoring of these pregnant women, aiming to reduce risks and promote a healthy pregnancy. specialized.Este estudo busca analisar em detalhes os impactos da obesidade materna na gestação, identificar as principais complicações e riscos envolvidos e propor medidas que visem melhorar os desfechos materno-infantis, proporcionando uma perspectiva mais segura e saudável para mulheres obesas durante esse período crucial de suas vidas. Trata-se de uma revisão narrativa de literatura uma abordagem metodológica que visa uma análise mais completa e integrada do tópico em foco. A pesquisa foi conduzida em ambiente virtual, abrangendo diversas plataformas de busca como Google Scholar, PubMed e SciELO (Scientific Electronic Library Online). Os materiais considerados abarcaram artigos, monografias, teses e dissertações disponíveis nessas plataformas científicas. Os critérios de inclusão englobaram trabalhos completos publicados entre 2012 e 2023, relacionados ao tópico proposto. Por outro lado, os critérios de exclusão contemplaram trabalhos fora desse intervalo de tempo, materiais duplicados e aqueles sem relevância para o tema proposto, além de documentos incompletos. A delimitação temporal para os trabalhos incluídos e excluídos proporcionou um foco claro nos avanços recentes e relevantes dentro do período analisado. Isso permitiu uma análise mais atualizada e alinhada com o estado atual da pesquisa nesse campo específico. Em conclusão, a obesidade durante a gravidez apresenta riscos e complicações significativos para a saúde da gestante e do feto. A atuação dos profissionais de saúde é essencial no cuidado e acompanhamento dessas gestantes, visando reduzir os riscos e promover uma gravidez saudável. especializadas

    Erratum to: The study of cardiovascular risk in adolescents – ERICA: rationale, design and sample characteristics of a national survey examining cardiovascular risk factor profile in Brazilian adolescents

    Get PDF
    1585

    Diagnóstico diferencial da Síndrome de Takotsubo e infarto agudo do miocárdio: uma revisão sistemática: Differential diagnosis of Takotsubo Syndrome and acute myocardial infarction: a systematic review

    Get PDF
    A cardiomiopatia de Takotsubo e o infarto agudo do miocárdio compartilham apresentação clínica e risco de morte semelhantes, embora uma das diferenças mais importantes seja a ausência de doença coronariana obstrutiva na cardiomiopatia de Takotsubo. Neste estudo, tem-se como objetivo analisar a literatura disponível avaliando o diagnóstico diferencial entre pacientes com CTT em comparação com pacientes com infarto agudo do miocárdio. Para isso, foi realizada uma revisão sistemática, utilizando-se a Pubmed e a Medline como base de dados. A partir da análise dos estudos e interpretação de suas principais descobertas, concluiu-se que para pacientes com CTT, outras condições e comorbidades, em vez de apenas dislipidemia e/ou outros fatores de risco estabelecidos, sejam responsáveis por um risco de morte comparável ao de IAM. No entanto, as conclusões desse estudo têm várias limitaçõe

    Geography and ecology shape the phylogenetic composition of Amazonian tree communities

    Get PDF
    AimAmazonia hosts more tree species from numerous evolutionary lineages, both young and ancient, than any other biogeographic region. Previous studies have shown that tree lineages colonized multiple edaphic environments and dispersed widely across Amazonia, leading to a hypothesis, which we test, that lineages should not be strongly associated with either geographic regions or edaphic forest types.LocationAmazonia.TaxonAngiosperms (Magnoliids; Monocots; Eudicots).MethodsData for the abundance of 5082 tree species in 1989 plots were combined with a mega-phylogeny. We applied evolutionary ordination to assess how phylogenetic composition varies across Amazonia. We used variation partitioning and Moran's eigenvector maps (MEM) to test and quantify the separate and joint contributions of spatial and environmental variables to explain the phylogenetic composition of plots. We tested the indicator value of lineages for geographic regions and edaphic forest types and mapped associations onto the phylogeny.ResultsIn the terra firme and várzea forest types, the phylogenetic composition varies by geographic region, but the igapó and white-sand forest types retain a unique evolutionary signature regardless of region. Overall, we find that soil chemistry, climate and topography explain 24% of the variation in phylogenetic composition, with 79% of that variation being spatially structured (R2 = 19% overall for combined spatial/environmental effects). The phylogenetic composition also shows substantial spatial patterns not related to the environmental variables we quantified (R2 = 28%). A greater number of lineages were significant indicators of geographic regions than forest types.Main ConclusionNumerous tree lineages, including some ancient ones (>66 Ma), show strong associations with geographic regions and edaphic forest types of Amazonia. This shows that specialization in specific edaphic environments has played a long-standing role in the evolutionary assembly of Amazonian forests. Furthermore, many lineages, even those that have dispersed across Amazonia, dominate within a specific region, likely because of phylogenetically conserved niches for environmental conditions that are prevalent within regions

    Geography and ecology shape the phylogenetic composition of Amazonian tree communities

    Get PDF
    Aim: Amazonia hosts more tree species from numerous evolutionary lineages, both young and ancient, than any other biogeographic region. Previous studies have shown that tree lineages colonized multiple edaphic environments and dispersed widely across Amazonia, leading to a hypothesis, which we test, that lineages should not be strongly associated with either geographic regions or edaphic forest types. Location: Amazonia. Taxon: Angiosperms (Magnoliids; Monocots; Eudicots). Methods: Data for the abundance of 5082 tree species in 1989 plots were combined with a mega-phylogeny. We applied evolutionary ordination to assess how phylogenetic composition varies across Amazonia. We used variation partitioning and Moran\u27s eigenvector maps (MEM) to test and quantify the separate and joint contributions of spatial and environmental variables to explain the phylogenetic composition of plots. We tested the indicator value of lineages for geographic regions and edaphic forest types and mapped associations onto the phylogeny. Results: In the terra firme and várzea forest types, the phylogenetic composition varies by geographic region, but the igapó and white-sand forest types retain a unique evolutionary signature regardless of region. Overall, we find that soil chemistry, climate and topography explain 24% of the variation in phylogenetic composition, with 79% of that variation being spatially structured (R2^{2} = 19% overall for combined spatial/environmental effects). The phylogenetic composition also shows substantial spatial patterns not related to the environmental variables we quantified (R2^{2} = 28%). A greater number of lineages were significant indicators of geographic regions than forest types. Main Conclusion: Numerous tree lineages, including some ancient ones (>66 Ma), show strong associations with geographic regions and edaphic forest types of Amazonia. This shows that specialization in specific edaphic environments has played a long-standing role in the evolutionary assembly of Amazonian forests. Furthermore, many lineages, even those that have dispersed across Amazonia, dominate within a specific region, likely because of phylogenetically conserved niches for environmental conditions that are prevalent within regions

    Mapping density, diversity and species-richness of the Amazon tree flora

    Get PDF
    Using 2.046 botanically-inventoried tree plots across the largest tropical forest on Earth, we mapped tree species-diversity and tree species-richness at 0.1-degree resolution, and investigated drivers for diversity and richness. Using only location, stratified by forest type, as predictor, our spatial model, to the best of our knowledge, provides the most accurate map of tree diversity in Amazonia to date, explaining approximately 70% of the tree diversity and species-richness. Large soil-forest combinations determine a significant percentage of the variation in tree species-richness and tree alpha-diversity in Amazonian forest-plots. We suggest that the size and fragmentation of these systems drive their large-scale diversity patterns and hence local diversity. A model not using location but cumulative water deficit, tree density, and temperature seasonality explains 47% of the tree species-richness in the terra-firme forest in Amazonia. Over large areas across Amazonia, residuals of this relationship are small and poorly spatially structured, suggesting that much of the residual variation may be local. The Guyana Shield area has consistently negative residuals, showing that this area has lower tree species-richness than expected by our models. We provide extensive plot meta-data, including tree density, tree alpha-diversity and tree species-richness results and gridded maps at 0.1-degree resolution

    Erratum to: The study of cardiovascular risk in adolescents – ERICA: rationale, design and sample characteristics of a national survey examining cardiovascular risk factor profile in Brazilian adolescents

    Full text link

    Mapping density, diversity and species-richness of the Amazon tree flora

    Get PDF
    Using 2.046 botanically-inventoried tree plots across the largest tropical forest on Earth, we mapped tree species-diversity and tree species-richness at 0.1-degree resolution, and investigated drivers for diversity and richness. Using only location, stratified by forest type, as predictor, our spatial model, to the best of our knowledge, provides the most accurate map of tree diversity in Amazonia to date, explaining approximately 70% of the tree diversity and species-richness. Large soil-forest combinations determine a significant percentage of the variation in tree species-richness and tree alpha-diversity in Amazonian forest-plots. We suggest that the size and fragmentation of these systems drive their large-scale diversity patterns and hence local diversity. A model not using location but cumulative water deficit, tree density, and temperature seasonality explains 47% of the tree species-richness in the terra-firme forest in Amazonia. Over large areas across Amazonia, residuals of this relationship are small and poorly spatially structured, suggesting that much of the residual variation may be local. The Guyana Shield area has consistently negative residuals, showing that this area has lower tree species-richness than expected by our models. We provide extensive plot meta-data, including tree density, tree alpha-diversity and tree species-richness results and gridded maps at 0.1-degree resolution

    Geography and ecology shape the phylogenetic composition of Amazonian tree communities

    Get PDF
    Aim: Amazonia hosts more tree species from numerous evolutionary lineages, both young and ancient, than any other biogeographic region. Previous studies have shown that tree lineages colonized multiple edaphic environments and dispersed widely across Amazonia, leading to a hypothesis, which we test, that lineages should not be strongly associated with either geographic regions or edaphic forest types. Location: Amazonia. Taxon: Angiosperms (Magnoliids; Monocots; Eudicots). Methods: Data for the abundance of 5082 tree species in 1989 plots were combined with a mega‐phylogeny. We applied evolutionary ordination to assess how phylogenetic composition varies across Amazonia. We used variation partitioning and Moran's eigenvector maps (MEM) to test and quantify the separate and joint contributions of spatial and environmental variables to explain the phylogenetic composition of plots. We tested the indicator value of lineages for geographic regions and edaphic forest types and mapped associations onto the phylogeny. Results: In the terra firme and várzea forest types, the phylogenetic composition varies by geographic region, but the igapó and white‐sand forest types retain a unique evolutionary signature regardless of region. Overall, we find that soil chemistry, climate and topography explain 24% of the variation in phylogenetic composition, with 79% of that variation being spatially structured (R2 = 19% overall for combined spatial/environmental effects). The phylogenetic composition also shows substantial spatial patterns not related to the environmental variables we quantified (R2 = 28%). A greater number of lineages were significant indicators of geographic regions than forest types. Main Conclusion: Numerous tree lineages, including some ancient ones (>66 Ma), show strong associations with geographic regions and edaphic forest types of Amazonia. This shows that specialization in specific edaphic environments has played a long‐standing role in the evolutionary assembly of Amazonian forests. Furthermore, many lineages, even those that have dispersed across Amazonia, dominate within a specific region, likely because of phylogenetically conserved niches for environmental conditions that are prevalent within regions

    Mapping density, diversity and species-richness of the Amazon tree flora

    Get PDF
    Using 2.046 botanically-inventoried tree plots across the largest tropical forest on Earth, we mapped tree species-diversity and tree species-richness at 0.1-degree resolution, and investigated drivers for diversity and richness. Using only location, stratified by forest type, as predictor, our spatial model, to the best of our knowledge, provides the most accurate map of tree diversity in Amazonia to date, explaining approximately 70% of the tree diversity and species-richness. Large soil-forest combinations determine a significant percentage of the variation in tree species-richness and tree alpha-diversity in Amazonian forest-plots. We suggest that the size and fragmentation of these systems drive their large-scale diversity patterns and hence local diversity. A model not using location but cumulative water deficit, tree density, and temperature seasonality explains 47% of the tree species-richness in the terra-firme forest in Amazonia. Over large areas across Amazonia, residuals of this relationship are small and poorly spatially structured, suggesting that much of the residual variation may be local. The Guyana Shield area has consistently negative residuals, showing that this area has lower tree species-richness than expected by our models. We provide extensive plot meta-data, including tree density, tree alpha-diversity and tree species-richness results and gridded maps at 0.1-degree resolution
    corecore