15 research outputs found

    Ocean currents help explain population genetic structure

    Get PDF
    Management and conservation can be greatly informed by considering explicitly how environmental factors influence population genetic structure. Using simulated larval dispersal estimates based on ocean current observations, we demonstrate how explicit consideration of frequency of exchange of larvae among sites via ocean advection can fundamentally change the interpretation of empirical population genetic structuring as compared with conventional spatial genetic analyses. Both frequency of larval exchange and empirical genetic difference were uncorrelated with Euclidean distance between sites. When transformed into relative oceanographic distances and integrated into a genetic isolation-by-distance framework, however, the frequency of larval exchange explained nearly 50 per cent of the variance in empirical genetic differences among sites over scales of tens of kilometres. Explanatory power was strongest when we considered effects of multiple generations of larval dispersal via intermediary locations on the long-term probability of exchange between sites. Our results uncover meaningful spatial patterning to population genetic structuring that corresponds with ocean circulation. This study advances our ability to interpret population structure from complex genetic data characteristic of high gene flow species, validates recent advances in oceanographic approaches for assessing larval dispersal and represents a novel approach to characterize population connectivity at small spatial scales germane to conservation and fisheries management

    Exploring the link between MORF4L1 and risk of breast cancer.

    Get PDF
    INTRODUCTION: Proteins encoded by Fanconi anemia (FA) and/or breast cancer (BrCa) susceptibility genes cooperate in a common DNA damage repair signaling pathway. To gain deeper insight into this pathway and its influence on cancer risk, we searched for novel components through protein physical interaction screens. METHODS: Protein physical interactions were screened using the yeast two-hybrid system. Co-affinity purifications and endogenous co-immunoprecipitation assays were performed to corroborate interactions. Biochemical and functional assays in human, mouse and Caenorhabditis elegans models were carried out to characterize pathway components. Thirteen FANCD2-monoubiquitinylation-positive FA cell lines excluded for genetic defects in the downstream pathway components and 300 familial BrCa patients negative for BRCA1/2 mutations were analyzed for genetic mutations. Common genetic variants were genotyped in 9,573 BRCA1/2 mutation carriers for associations with BrCa risk. RESULTS: A previously identified co-purifying protein with PALB2 was identified, MRG15 (MORF4L1 gene). Results in human, mouse and C. elegans models delineate molecular and functional relationships with BRCA2, PALB2, RAD51 and RPA1 that suggest a role for MRG15 in the repair of DNA double-strand breaks. Mrg15-deficient murine embryonic fibroblasts showed moderate sensitivity to γ-irradiation relative to controls and reduced formation of Rad51 nuclear foci. Examination of mutants of MRG15 and BRCA2 C. elegans orthologs revealed phenocopy by accumulation of RPA-1 (human RPA1) nuclear foci and aberrant chromosomal compactions in meiotic cells. However, no alterations or mutations were identified for MRG15/MORF4L1 in unclassified FA patients and BrCa familial cases. Finally, no significant associations between common MORF4L1 variants and BrCa risk for BRCA1 or BRCA2 mutation carriers were identified: rs7164529, Ptrend = 0.45 and 0.05, P2df = 0.51 and 0.14, respectively; and rs10519219, Ptrend = 0.92 and 0.72, P2df = 0.76 and 0.07, respectively. CONCLUSIONS: While the present study expands on the role of MRG15 in the control of genomic stability, weak associations cannot be ruled out for potential low-penetrance variants at MORF4L1 and BrCa risk among BRCA2 mutation carriers.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are

    Cytogenetic and molecular analysis of early stage renal cell carcinomas in a family with a translocation (2;3)(q35;q21)

    No full text
    Previously, we described a family with renal cell carcinoma (RCC) and a constitutional balanced t(2;3) (q35;q21). Based on loss of heterozygosity and von Hippel-Lindau (VHL) gene mutation analyses in five tumor biopsies from three patients in this family, we proposed a multistep model for RCC development in which the familial translocation may act as a primary oncogenic event leading to (nondisjunctional) loss of the translocation-derived chromosome 3, and somatic mutation of the VHL gene as a secondary event related to tumor progression. Here, we describe the cytogenetic and molecular analysis of three novel tumors at early stages of development in two members of this family. Again, loss of derivative chromosome 3 was found in two of these tumors and a VHL mutation in one of them. In the third tumor, however, none of these abnormalities could be detected. These results underline our previous notion that loss of derivative chromosome 3 and VHL gene mutation play critical roles in familial RCC. In addition, they show that both anomalies may occur at relatively early stages of tumor developmen

    Vinculin network-mediated cytoskeletal remodeling regulates contractile function in the aging heart.

    No full text
    The human heart is capable of functioning for decades despite minimal cell turnover or regeneration, suggesting that molecular alterations help sustain heart function with age. However, identification of compensatory remodeling events in the aging heart remains elusive. We present the cardiac proteomes of young and old rhesus monkeys and rats, from which we show that certain age-associated remodeling events within the cardiomyocyte cytoskeleton are highly conserved and beneficial rather than deleterious. Targeted transcriptomic analysis in Drosophila confirmed conservation and implicated vinculin as a unique molecular regulator of cardiac function during aging. Cardiac-restricted vinculin overexpression reinforced the cortical cytoskeleton and enhanced myofilament organization, leading to improved contractility and hemodynamic stress tolerance in healthy and myosin-deficient fly hearts. Moreover, cardiac-specific vinculin overexpression increased median life span by more than 150% in flies. A broad array of potential therapeutic targets and regulators of age-associated modifications, specifically for vinculin, are presented. These findings suggest that the heart has molecular mechanisms to sustain performance and promote longevity, which may be assisted by therapeutic intervention to ameliorate the decline of function in aging patient hearts

    Vinculin network–mediated cytoskeletal remodeling regulates contractile function in the aging heart

    No full text
    The human heart is capable of functioning for decades despite minimal cell turnover or regeneration, suggesting that molecular alterations help sustain heart function with age. However, identification of compensatory remodeling events in the aging heart remains elusive. We present the cardiac proteomes of young and old rhesus monkeys and rats, from which we show that certain age-associated remodeling events within the cardiomyocyte cytoskeleton are highly conserved and beneficial rather than deleterious. Targeted transcriptomic analysis in Drosophila confirmed conservation and implicated vinculin as a unique molecular regulator of cardiac function during aging. Cardiac-restricted vinculin overexpression reinforced the cortical cytoskeleton and enhanced myofilament organization, leading to improved contractility and hemodynamic stress tolerance in healthy and myosin-deficient fly hearts. Moreover, cardiac-specific vinculin overexpression increased median life span by more than 150% in flies. A broad array of potential therapeutic targets and regulators of age-associated modifications, specifically for vinculin, are presented. These findings suggest that the heart has molecular mechanisms to sustain performance and promote longevity, which may be assisted by therapeutic intervention to ameliorate the decline of function in aging patient hearts

    Unfavorable pathological characteristics in familial colorectal cancer with low-level microsatellite instability.

    No full text
    Contains fulltext : 51129.pdf (publisher's version ) (Closed access)A high degree of microsatellite instability (MSI) in colorectal cancer (CRC) is a hallmark of hereditary non-polyposis colorectal cancer (HNPCC), caused by germline defects in the mismatch repair (MMR) genes. A low degree of instability (less than 30% of the microsatellites) is seen in a subset of tumors. To clarify the significance of this low degree of MSI phenotype, we studied the differences between patients with colorectal tumors with high-level, low-level and no MSI. Colorectal tumors with no (n = 68) and low-level (n = 18) MSI of patients clinically suspected of HNPCC were compared to colorectal tumors with high-level MSI (n = 12) of patients that carry a pathogenic germline mutation in a MMR gene. Compared to tumors with no MSI, tumors with low-level MSI were classified more frequently as stage T3 or T4 (100% vs 68% respectively), and showed less immune response (P = 0.02). No significant differences in familial CRC risk were found by comparing pedigrees of these two groups of tumors. Compared to the group of tumors with high-level MSI, the group of tumors with low-level MSI had a less suspicious family history, a higher percentage of lymph node metastasis (56 vs 17%), and less immune response. Thus, with respect to genetic risks, familial CRC can be divided into two groups: Tumors with high-level MSI and tumors with low-level or no MSI. However, tumors with low-level MSI show unfavorable pathological characteristics compared to tumors with no and tumors with high-level MSI. These differences suggest a distinct underlying biology of CRC with low-level MSI

    Recurrence and Variability of Germline EPCAM Deletions in Lynch Syndrome

    Get PDF
    Contains fulltext : 96266.pdf (publisher's version ) (Closed access)Recently, we identified 3' end deletions in the EPCAM gene as a novel cause of Lynch syndrome. These truncating EPCAM deletions cause allele-specific epigenetic silencing of the neighboring DNA mismatch repair gene MSH2 in tissues expressing EPCAM. Here we screened a cohort of unexplained Lynch-like families for the presence of EPCAM deletions. We identified 27 novel independent MSH2-deficient families from multiple geographical origins with varying deletions all encompassing the 3' end of EPCAM, but leaving the MSH2 gene intact. Within The Netherlands and Germany, EPCAM deletions appeared to represent at least 2.8% and 1.1% of the confirmed Lynch syndrome families, respectively. MSH2 promoter methylation was observed in epithelial tissues of all deletion carriers tested, thus confirming silencing of MSH2 as the causative defect. In a total of 45 families, 19 different deletions were found, all including the last two exons and the transcription termination signal of EPCAM. All deletions appeared to originate from Alu-repeat mediated recombination events. In 17 cases regions of microhomology around the breakpoints were found, suggesting nonallelic homologous recombination as the most likely mechanism. We conclude that 3' end EPCAM deletions are a recurrent cause of Lynch syndrome, which should be implemented in routine Lynch syndrome diagnostics
    corecore