30 research outputs found

    Contact Interactions Probe Effective Dark Matter Models at the LHC

    Full text link
    Effective field theories provide a simple framework for probing possible dark matter (DM) models by reparametrising full interactions into a reduced number of operators with smaller dimensionality in parameter space. In many cases these models have four particle vertices, e.g. qqXX, leading to the pair production of dark matter particles, X, at a hadron collider from initial state quarks, q. In this analysis we show that for many fundamental DM models with s-channel DM couplings to qq-pairs, these effective vertices must also produce quark contact interactions (CI) of the form qqqq. The respective effective couplings are related by the common underlying theory which allows one to translate the upper limits from one coupling to the other. We show that at the LHC, the experimental limits on quark contact interactions give stronger translated limits on the DM coupling than the experimental searches for dark matter pair production.Comment: 6 pages, 3 figure

    Automatised Constraints on New Physics at the LHC and Beyond

    Get PDF
    In this thesis, we discuss the development and use cases of the public software CheckMATE which is designed to allow for easy tests of theories beyond the Standard Model against current results from the Large Hadron Collider (LHC). We illustrate the general functionality of this tool and provide hands-on examples to explain how it can be used to test results from the ATLAS and CMS experiments. In addition, we explain how new analyses can be conveniently added to the existing framework. This tool is then used to project a search for monojet final states to a high luminosity LHC with a centre-of-mass energy of 14 TeV. Here, our prospective analysis is used to determine the expected sensitivity to a Higgs Portal scenario which couples the Standard Model to a hidden sector via an invisibly decaying second heavy scalar. We show that complementary bounds to those derived from Higgs boson searches in 8 TeV LHC data can be set, however only if a significant reduction of the current systematic uncertainties for the background estimates of such a search can be achieved. Furthermore, we use CheckMATE and its large set of implemented searches for natural Supersymmetry to show how an extension of the Minimal Supersymmetric Standard Model by an additional chiral gauge singlet typically reduces the LHC sensitivity. In the context of R-parity violating Supersymmetry, we go beyond CheckMATE and the LHC and derive how the expected sensitivity of the proposed fixed-target experiment SHiP to observe long-lived neutralinos produced via rare Standard Model meson decays can significantly improve existing bounds from low energy observations

    Illuminating Dark Matter at the ILC

    Full text link
    The WIMP (weakly interacting massive particle) paradigm for dark matter is currently being probed via many different experiments. Direct detection, indirect detection and collider searches are all hoping to catch a glimpse of these elusive particles. Here, we examine the potential of the ILC (International Linear Collider) to shed light on the origin of dark matter. By using an effective field theory approach we are also able to compare the reach of the ILC with that of the other searches. We find that for low mass dark matter (< 10 GeV), the ILC offers a unique opportunity to search for WIMPS beyond any other experiment. In addition, if dark matter happens to only couple to leptons or via a spin dependent interaction, the ILC can give an unrivalled window to these models. We improve on previous ILC studies by constructing a comprehensive list of effective theories that allows us to move beyond the non-relativistic approximation.Comment: 26 page

    Higgsophilic gauge bosons and monojets at the LHC

    Get PDF
    We consider a generic framework where the Standard Model (SM) coexists with a hidden sector endowed with some additional gauge symmetry. When this symmetry is broken by a scalar field charged under the hidden gauge group, the corresponding scalar boson generally mixes with the SM Higgs boson. In addition, massive hidden gauge bosons emerge and via the mixing, the observed Higgs-like mass eigenstate is the only known particle that couples to these hidden gauge bosons directly. We study the LHC monojet signatures of this scenario and the corresponding constraints on the gauge coupling of the hidden gauge group as well as the mixing of the Higgs scalars.Peer reviewe

    The Constrained Maximal Expression Level Owing to Haploidy Shapes Gene Content on the Mammalian X Chromosome.

    Get PDF
    X chromosomes are unusual in many regards, not least of which is their nonrandom gene content. The causes of this bias are commonly discussed in the context of sexual antagonism and the avoidance of activity in the male germline. Here, we examine the notion that, at least in some taxa, functionally biased gene content may more profoundly be shaped by limits imposed on gene expression owing to haploid expression of the X chromosome. Notably, if the X, as in primates, is transcribed at rates comparable to the ancestral rate (per promoter) prior to the X chromosome formation, then the X is not a tolerable environment for genes with very high maximal net levels of expression, owing to transcriptional traffic jams. We test this hypothesis using The Encyclopedia of DNA Elements (ENCODE) and data from the Functional Annotation of the Mammalian Genome (FANTOM5) project. As predicted, the maximal expression of human X-linked genes is much lower than that of genes on autosomes: on average, maximal expression is three times lower on the X chromosome than on autosomes. Similarly, autosome-to-X retroposition events are associated with lower maximal expression of retrogenes on the X than seen for X-to-autosome retrogenes on autosomes. Also as expected, X-linked genes have a lesser degree of increase in gene expression than autosomal ones (compared to the human/Chimpanzee common ancestor) if highly expressed, but not if lowly expressed. The traffic jam model also explains the known lower breadth of expression for genes on the X (and the Z of birds), as genes with broad expression are, on average, those with high maximal expression. As then further predicted, highly expressed tissue-specific genes are also rare on the X and broadly expressed genes on the X tend to be lowly expressed, both indicating that the trend is shaped by the maximal expression level not the breadth of expression per se. Importantly, a limit to the maximal expression level explains biased tissue of expression profiles of X-linked genes. Tissues whose tissue-specific genes are very highly expressed (e.g., secretory tissues, tissues abundant in structural proteins) are also tissues in which gene expression is relatively rare on the X chromosome. These trends cannot be fully accounted for in terms of alternative models of biased expression. In conclusion, the notion that it is hard for genes on the Therian X to be highly expressed, owing to transcriptional traffic jams, provides a simple yet robustly supported rationale of many peculiar features of X's gene content, gene expression, and evolution

    R-Parity Violation and Light Neutralinos at SHiP and the LHC

    Get PDF
    We study the sensitivity of the proposed SHiP experiment to the LQD operator in R-parity violating supersymmetric theories. We focus on single neutralino production via rare meson decays and the observation of downstream neutralino decays into charged mesons inside the SHiP decay chamber. We provide a generic list of effective operators and decay width formulae for any LQD coupling and show the resulting expected SHiP sensitivity for a widespread list of benchmark scenarios via numerical simulations. We compare this sensitivity to expected limits from testing the same decay topology at the LHC with ATLAS
    corecore