12 research outputs found

    Sustainable Waste-to-Energy Technologies: Bioelectrochemical Systems

    Get PDF
    The food industry produces a large amount of waste and wastewater, of which most of the constituents are carbohydrates, proteins, lipids, and organic fibers. Therefore food wastes are highly biodegradable and energy rich. Bioelectrochemical systems (BESs) are systems that use microorganisms to biochemically catalyze complex substrates into useful energy products, in which the catalytic reactions take place on electrodes. Microbial fuel cells (MFCs) are a type of bioelectrochemical systems that oxidize substrates and generate electric current. Microbial electrolysis cells (MECs) are another type of bioelectrochemical systems that use an external power source to catalyze the substrate into by-products such as hydrogen gas, methane gas, or hydrogen peroxide. BESs are advantageous due to their ability to achieve a degree of substrate remediation while generating energy. This chapter presents an extensive literature review on the use of MFCs and MECs to remediate and recover energy from food industry waste. These bioelectrochemical systems are still in their infancy state and further research is needed to better understand the systems and optimize their performance. Major challenges and limitations for the use of BESs are summarized and future research needs are identified

    Bioaugmentation of Sequencing Batch Reactors for Biological Phosphorus Removal: Comparative rRNA Sequence Analysis and Hybridization with Oligonucleotide Probes

    No full text
    Four laboratory-scale sequencing batch reactors (SBRs) were operated to evaluate whether bioaugmentation with Acinetobacter spp. can be used to improve start-up and performance of enhanced biological phosphorus removal (EBPR) systems. Two of the SBRs were bioaugmented during start-up by adding pure cultures of Acinetobacter spp., the third reactor received an amendment of activated sludge from a laboratory-scale EBPR system, and the fourth reactor, receiving no amendment, served as a control. Various chemical parameters were measured to monitor the performance of the four SBRS. Oligonucleotide probes of nested phylogenetic specificity were designed to quantify the contribution of Acinetobacter to EBPR. The probes were characterized for use in quantitative membrane hybridizations and fluorescent in situ hybridizations. Data from hybridizations with samples collected from the SBRs show declining levels of Acinetobacter spp. over the experiment. All four reactors achieved significant phosphorus removal and 90% nitrification after three days of operation. The results do not show a positive correlation between levels of Acinetobacter and successful EBPR. Four laboratory-scale sequencing batch reactors (SBRs) were operated to evaluate whether bioaugmentation with Acinetobacter spp. can be used to improve start-up and performance of enhanced biological phosphorus removal (EBPR) systems. Two of the SBRs were bioaugmented during start-up by adding pure cultures of Acinetobacter spp., the third reactor received an amendment of activated sludge from a laboratory-scale EBPR system, and the fourth reactor, receiving no amendment, served as a control. Various chemical parameters were measured to monitor the performance of the four SBRS. Oligonucleotide probes of nested phylogenetic specificity were designed to quantify the contribution of Acinetobacter to EBPR. The probes were characterized for use in quantitative membrane hybridizations and fluorescent in situ hybridizations. Data from hybridizations with samples collected from the SBRs show declining levels of Acinetobacter spp. over the experiment. All four reactors achieved significant phosphorus removal and 90% nitrification after three days of operation. The results do not show a positive correlation between levels of Acinetobacter and successful EBPR

    Effects of operational shocks on key microbial populations for biogas production in UASB (Upflow Anaerobic Sludge Blanket) reactors

    No full text
    This work compares the overall performance and biogas production of continuous and intermittent UASB (Upflow Anaerobic Sludge Blanket) reactors treating dairy wastewater and subjected to fat, hydraulic and temperature shocks. The systems were monitored for methane production, effluent concentration, volatile fatty acids, and microbial populations of the Eubacteria, Archaea and Syntrophomonadaceae groups. This last microbial group has been reported in literature as being determinant for the degradation of fatty substrates present in the wastewater and subsequent biogas production. Results show that both continuous and intermittent systems supported the applied shocks. However, the intermittent systems exhibited better performance than the continuous systems in biogas production and physical-chemical parameters. Syntrophomonadaceae microbial group was present in the intermittent systems, but was not detected in the biomass from the continuous systems. Hydraulic and temperature shocks, but not the fat shock, caused severe losses in the relative abundance of the Syntrophomonadaceae group in intermittent systems, leading to undetectable levels during the temperature shock. The severity of the effects of the applied shocks on the key microbial group Syntrophomonadaceae, were classified as: fats < hydraulic < temperature. Results from a full-scale anaerobic reactor confirm the effect of intermittent operation on the presence of Syntrophomonadaceae and the effect on reactor performance
    corecore