148 research outputs found

    Zinc oxide nanoparticle-coated films: fabrication, characterization, and antibacterial properties

    Get PDF
    In this article, novel antibacterial PVC-based films coated with ZnO nanoparticles (NPs) were fabricated, characterized, and studied for their antibacterial properties. It was shown that the ZnO NPs were coated on the surface of the PVC films uniformly and that the coating process did not affect the size and shape of the NPs on the surface of PVC films. Films coated with concentrations of either 0.2 or 0.075 g/L of ZnO NPs exhibited antibacterial activity against both Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria, but exhibited no antifungal activity against Aspergillus flavus and Penicillium citrinum. Smaller particles (100 nm) exhibited more potent antibacterial activity than larger particles (1000 nm). All ZnO-coated films maintained antibacterial activity after 30 days in water

    Dysregulation of Cell Polarity Proteins Synergize with Oncogenes or the Microenvironment to Induce Invasive Behavior in Epithelial Cells

    Get PDF
    Changes in expression and localization of proteins that regulate cell and tissue polarity are frequently observed in carcinoma. However, the mechanisms by which changes in cell polarity proteins regulate carcinoma progression are not well understood. Here, we report that loss of polarity protein expression in epithelial cells primes them for cooperation with oncogenes or changes in tissue microenvironment to promote invasive behavior. Activation of ErbB2 in cells lacking the polarity regulators Scribble, Dlg1 or AF-6, induced invasive properties. This cooperation required the ability of ErbB2 to regulate the Par6/aPKC polarity complex. Inhibition of the ErbB2-Par6 pathway was sufficient to block ErbB2-induced invasion suggesting that two polarity hits may be needed for ErbB2 to promote invasion. Interestingly, in the absence of ErbB2 activation, either a combined loss of two polarity proteins, or exposure of cells lacking one polarity protein to cytokines IL-6 or TNFα induced invasive behavior in epithelial cells. We observed the invasive behavior only when cells were plated on a stiff matrix (Matrigel/Collagen-1) and not when plated on a soft matrix (Matrigel alone). Cells lacking two polarity proteins upregulated expression of EGFR and activated Akt. Inhibition of Akt activity blocked the invasive behavior identifying a mechanism by which loss of polarity promotes invasion of epithelial cells. Thus, we demonstrate that loss of polarity proteins confers phenotypic plasticity to epithelial cells such that they display normal behavior under normal culture conditions but display aggressive behavior in response to activation of oncogenes or exposure to cytokines

    Synergistic Interactions between HDAC and Sirtuin Inhibitors in Human Leukemia Cells

    Get PDF
    Aberrant histone deacetylase (HDAC) activity is frequent in human leukemias. However, while classical, NAD+-independent HDACs are an established therapeutic target, the relevance of NAD+-dependent HDACs (sirtuins) in leukemia treatment remains unclear. Here, we assessed the antileukemic activity of sirtuin inhibitors and of the NAD+-lowering drug FK866, alone and in combination with traditional HDAC inhibitors. Primary leukemia cells, leukemia cell lines, healthy leukocytes and hematopoietic progenitors were treated with sirtuin inhibitors (sirtinol, cambinol, EX527) and with FK866, with or without addition of the HDAC inhibitors valproic acid, sodium butyrate, and vorinostat. Cell death was quantified by propidium iodide cell staining and subsequent flow-cytometry. Apoptosis induction was monitored by cell staining with FITC-Annexin-V/propidium iodide or with TMRE followed by flow-cytometric analysis, and by measuring caspase3/7 activity. Intracellular Bax was detected by flow-cytometry and western blotting. Cellular NAD+ levels were measured by enzymatic cycling assays. Bax was overexpressed by retroviral transduction. Bax and SIRT1 were silenced by RNA-interference. Sirtuin inhibitors and FK866 synergistically enhanced HDAC inhibitor activity in leukemia cells, but not in healthy leukocytes and hematopoietic progenitors. In leukemia cells, HDAC inhibitors were found to induce upregulation of Bax, a pro-apoptotic Bcl2 family-member whose translocation to mitochondria is normally prevented by SIRT1. As a result, leukemia cells become sensitized to sirtuin inhibitor-induced apoptosis. In conclusion, NAD+-independent HDACs and sirtuins cooperate in leukemia cells to avoid apoptosis. Combining sirtuin with HDAC inhibitors results in synergistic antileukemic activity that could be therapeutically exploited

    EMT Inducers Catalyze Malignant Transformation of Mammary Epithelial Cells and Drive Tumorigenesis towards Claudin-Low Tumors in Transgenic Mice

    Get PDF
    The epithelial-mesenchymal transition (EMT) is an embryonic transdifferentiation process consisting of conversion of polarized epithelial cells to motile mesenchymal ones. EMT–inducing transcription factors are aberrantly expressed in multiple tumor types and are known to favor the metastatic dissemination process. Supporting oncogenic activity within primary lesions, the TWIST and ZEB proteins can prevent cells from undergoing oncogene-induced senescence and apoptosis by abolishing both p53- and RB-dependent pathways. Here we show that they also downregulate PP2A phosphatase activity and efficiently cooperate with an oncogenic version of H-RAS in malignant transformation of human mammary epithelial cells. Thus, by down-regulating crucial tumor suppressor functions, EMT inducers make cells particularly prone to malignant conversion. Importantly, by analyzing transformed cells generated in vitro and by characterizing novel transgenic mouse models, we further demonstrate that cooperation between an EMT inducer and an active form of RAS is sufficient to trigger transformation of mammary epithelial cells into malignant cells exhibiting all the characteristic features of claudin-low tumors, including low expression of tight and adherens junction genes, EMT traits, and stem cell–like characteristics. Claudin-low tumors are believed to be the most primitive breast malignancies, having arisen through transformation of an early epithelial precursor with inherent stemness properties and metaplastic features. Challenging this prevailing view, we propose that these aggressive tumors arise from cells committed to luminal differentiation, through a process driven by EMT inducers and combining malignant transformation and transdifferentiation

    Epithelial to mesenchymal transition and breast cancer

    Get PDF
    Epithelial-mesenchymal plasticity in breast carcinoma encompasses the phenotypic spectrum whereby epithelial carcinoma cells within a primary tumor acquire mesenchymal features and re-epithelialize to form a cohesive secondary mass at a metastatic site. Such plasticity has implications in progression of breast carcinoma to metastasis, and will likely influence response to therapy. The transcriptional and epigenetic regulation of molecular and cellular processes that underlie breast cancer and result in characteristic changes in cell behavior can be monitored using an increasing array of marker proteins. Amongst these markers exists the potential for emergent prognostic, predictive and therapeutic targeting

    Epithelial-mesenchymal transition and cancer stem cells: a dangerously dynamic duo in breast cancer progression

    Get PDF
    Aberrant activation of a latent embryonic program - known as the epithelial-mesenchymal transition (EMT) - can endow cancer cells with the migratory and invasive capabilities associated with metastatic competence. The induction of EMT entails the loss of epithelial characteristics and the de novo acquisition of a mesenchymal phenotype. In breast cancer, the EMT state has been associated with cancer stem cell properties including expression of the stem cell-associated CD44+/CD24-/low antigenic profile, self-renewal capabilities and resistance to conventional therapies. Intriguingly, EMT features are also associated with stem cells isolated from the normal mouse mammary gland and human breast reduction tissues as well as the highly aggressive metaplastic and claudin-low breast tumor subtypes. This has implications for the origin of these breast tumors as it remains unclear whether they derive from cells that have undergone EMT or whether they represent an expansion of a pre-existing stem cell population that expresses EMT-associated markers to begin with. In the present review, we consider the current evidence connecting EMT and stem cell attributes and discuss the ramifications of these newly recognized links for our understanding of the emergence of distinct breast cancer subtypes and breast cancer progression

    Nucleant layer effect on nanocolumnar ZnO films grown by electrodeposition

    Get PDF
    Different ZnO nanostructured films were electrochemically grown, using an aqueous solution based on ZnCl2, on three types of transparent conductive oxides grow on commercial ITO (In2O3:Sn)-covered glass substrates: (1) ZnO prepared by spin coating, (2) ZnO prepared by direct current magnetron sputtering, and (3) commercial ITO-covered glass substrates. Although thin, these primary oxide layers play an important role on the properties of the nanostructured films grown on top of them. Additionally, these primary oxide layers prevent direct hole combination when used in optoelectronic devices. Structural and optical characterizations were carried out by scanning electron microscopy, atomic force microscopy, and optical transmission spectroscopy. We show that the properties of the ZnO nanostructured films depend strongly on the type of primary oxide-covered substrate used. Previous studies on different electrodeposition methods for nucleation and growth are considered in the final discussion.We thank Prof. A. Segura of the Universitat de Valencia for the facilities with the sputtering equipment. This work was supported by the project PROMETEO/2009/074 from the Generalitat Valenciana.Reyes Tolosa, MD.; Damonte, LC.; Brine, H.; Bolink, HJ.; Hernández Fenollosa, MDLÁ. (2013). Nucleant layer effect on nanocolumnar ZnO films grown by electrodeposition. Nanoscale Research Letters. 8:135-144. https://doi.org/10.1186/1556-276X-8-135S1351448Franklin JB, Zou B, Petrov P, McComb DW, Ryanand MP, McLachlan MA,J: Optimised pulsed laser deposition of ZnO thin films on transparent conducting substrates. Mater Chem 2011, 21: 8178–8182. 10.1039/c1jm10658aJaroslav B, Andrej V, Marie N, Šuttab P, Miroslav M, František U: Cryogenic pulsed laser deposition of ZnO. Vacuum 2012, 86(6):684–688. 10.1016/j.vacuum.2011.07.033Jae Bin L, Hyeong Joon K, Soo Gil K, Cheol Seong H, Seong-Hyeon H, Young Hwa S, Neung Hun L: Deposition of ZnO thin films by magnetron sputtering for a film bulk acoustic resonator. Thin Solid Films 2003, 435: 179–185. 10.1016/S0040-6090(03)00347-XXionga DP, Tanga XG, Zhaoa WR, Liua QX, Wanga YH, Zhoub SL: Deposition of ZnO and MgZnO films by magnetron sputtering. Vacuum 2013, 89: 254–256.Reyes Tolosa MD, Orozco-Messana J, Lima ANC, Camaratta R, Pascual M, Hernandez-Fenollosa MA: Electrochemical deposition mechanism for ZnO nanorods: diffusion coefficient and growth models. J Electrochem Soc 2011, 158(11):E107-E110.Ming F, Ji Z: Mechanism of the electrodeposition of ZnO nanosheets below room temperature. J Electrochem Soc 2010, 157(8):D450-D453. 10.1149/1.3447738Pullini D, Pruna A, Zanin S, Busquets Mataix D: High-efficiency electrodeposition of large scale ZnO nanorod arrays for thin transparent electrodes. J Electrochem Soc 2012, 159: E45-E51. 10.1149/2.093202jesPruna A, Pullini D, Busquets Mataix D: Influence of deposition potential on structure of ZnO nanowires synthesized in track-etched membranes. J Electrochem Soc 2012, 159: E92-E98. 10.1149/2.003205jesMarotti RE, Giorgi P, Machado G, Dalchiele EA: Crystallite size dependence of band gap energy for electrodeposited ZnO grown at different temperatures. Solar Energy Materials and Solar Cells 2009, 90(15):2356–2361.Yeong Hwan K, Myung Sub K, Jae Su Y: Structural and optical properties of ZnO nanorods by electrochemical growth using multi-walled carbon nanotube-composed seed layers. Nanoscale Res Lett 2012, 7: 13. 10.1186/1556-276X-7-13Elias J, Tena-Zaera R, Lévy-Clément C: Electrodeposition of ZnO nanowires with controlled dimensions for photovoltaic applications: role of buffer layer. Thin Solid Films 2007, 515(24):8553–8557. 10.1016/j.tsf.2007.04.027Zhai Y, Zhai S, Chen G, Zhang K, Yue Q, Wang L, Liu J, Jia J: Effects of morphology of nanostructured ZnO on direct electrochemistry and biosensing properties of glucose oxidase. J Electroanal Chem 2011, 656: 198–205. 10.1016/j.jelechem.2010.11.020Reyes Tolosa MD, Orozco-Messana J, Damonte LC, Hernandez-Fenollosa MA: ZnO nanoestructured layers processing with morphology control by pulsed electrodeposition. J Electrochem Soc 2011, 158(7):D452-D455. 10.1149/1.3593004Gouxa A, Pauporté T, Chivot J, Lincot D: Temperature effects on ZnO electrodeposition. Electrochim Acta 2005, 50(11):2239–2248. 10.1016/j.electacta.2004.10.007Kwok WM, Djurisic , Aleksandra B, Leung , Yu H, Li D, Tam KH, Phillips DL, Chan WK: Influence of annealing on stimulated emission in ZnO nanorods. Appl Phys Lett 2006, 89(18):183112. 183112–3 183112–3 10.1063/1.2378560Donderis V, Hernández-Fenollosa MA, Damonte LC, Marí B, Cembrero J: Enhancement of surface morphology and optical properties of nanocolumnar ZnO films. Superlattices and Microstructures 2007, 42: 461–467. 10.1016/j.spmi.2007.04.068Ghayour H, Rezaie HR, Mirdamadi S, Nourbakhsh AA: The effect of seed layer thickness on alignment and morphology of ZnO nanorods. Vacuum 2011, 86: 101–105. 10.1016/j.vacuum.2011.04.025Michael B, Mohammad Bagher R, Sayyed-Hossein K, Wojtek W, Kourosh K-z: Aqueous synthesis of interconnected ZnO nanowires using spray pyrolysis deposited seed layers. Mater Lett 2010, 64: 291–294. 10.1016/j.matlet.2009.10.065Jang Bo S, Hyuk C, Sung-O K: Rapid hydrothermal synthesis of zinc oxide nanowires by annealing methods on seed layers. J Nanomater 2011, 2011: 6.Peiro AM, Punniamoorthy R, Kuveshni G, Boyle DS, Paul O’B, Donal DC, Bradley , Jenny N, Durrant JR: Hybrid polymer/metal oxide solar cells based on ZnO columnar structures. J Mater Chem 2006, 16(21):2088–2096. 10.1039/b602084dVallet-Regí M, Salinas AJ, Arcos D: From the bioactive glasses to the star gels. J Mater Sci Mater Med 2006, 17: 1011–1017.Peulon S, Lincot D: Mechanistic study of cathodic electrodeposition of zinc oxide and zinc hydroxychloride films from oxygenated aqueous zinc chloride solutions. J Electrochem Soc 1998, 145: 864. 10.1149/1.1838359Dalchiele EA, Giorgi P, Marotti RE, Martín F, Ramos-Barrado JR, Ayouci R, Leinen D: Electrodeposition of ZnO thin films on n-Si(100). Sol. Energy Mater. Sol. Cells 2001, 70: 245. 10.1016/S0927-0248(01)00065-4Courtney IA, Dahn JR: Electrochemical and in situ X‐ray diffraction studies of the reaction of lithium with tin oxide composites. J Electrochem Soc 1997, 144(6):2045–2052. 10.1149/1.183774

    Why Are Outcomes Different for Registry Patients Enrolled Prospectively and Retrospectively? Insights from the Global Anticoagulant Registry in the FIELD-Atrial Fibrillation (GARFIELD-AF).

    Get PDF
    Background: Retrospective and prospective observational studies are designed to reflect real-world evidence on clinical practice, but can yield conflicting results. The GARFIELD-AF Registry includes both methods of enrolment and allows analysis of differences in patient characteristics and outcomes that may result. Methods and Results: Patients with atrial fibrillation (AF) and ≥1 risk factor for stroke at diagnosis of AF were recruited either retrospectively (n = 5069) or prospectively (n = 5501) from 19 countries and then followed prospectively. The retrospectively enrolled cohort comprised patients with established AF (for a least 6, and up to 24 months before enrolment), who were identified retrospectively (and baseline and partial follow-up data were collected from the emedical records) and then followed prospectively between 0-18 months (such that the total time of follow-up was 24 months; data collection Dec-2009 and Oct-2010). In the prospectively enrolled cohort, patients with newly diagnosed AF (≤6 weeks after diagnosis) were recruited between Mar-2010 and Oct-2011 and were followed for 24 months after enrolment. Differences between the cohorts were observed in clinical characteristics, including type of AF, stroke prevention strategies, and event rates. More patients in the retrospectively identified cohort received vitamin K antagonists (62.1% vs. 53.2%) and fewer received non-vitamin K oral anticoagulants (1.8% vs . 4.2%). All-cause mortality rates per 100 person-years during the prospective follow-up (starting the first study visit up to 1 year) were significantly lower in the retrospective than prospectively identified cohort (3.04 [95% CI 2.51 to 3.67] vs . 4.05 [95% CI 3.53 to 4.63]; p = 0.016). Conclusions: Interpretations of data from registries that aim to evaluate the characteristics and outcomes of patients with AF must take account of differences in registry design and the impact of recall bias and survivorship bias that is incurred with retrospective enrolment. Clinical Trial Registration: - URL: http://www.clinicaltrials.gov . Unique identifier for GARFIELD-AF (NCT01090362)

    Improved risk stratification of patients with atrial fibrillation: an integrated GARFIELD-AF tool for the prediction of mortality, stroke and bleed in patients with and without anticoagulation.

    Get PDF
    OBJECTIVES: To provide an accurate, web-based tool for stratifying patients with atrial fibrillation to facilitate decisions on the potential benefits/risks of anticoagulation, based on mortality, stroke and bleeding risks. DESIGN: The new tool was developed, using stepwise regression, for all and then applied to lower risk patients. C-statistics were compared with CHA2DS2-VASc using 30-fold cross-validation to control for overfitting. External validation was undertaken in an independent dataset, Outcome Registry for Better Informed Treatment of Atrial Fibrillation (ORBIT-AF). PARTICIPANTS: Data from 39 898 patients enrolled in the prospective GARFIELD-AF registry provided the basis for deriving and validating an integrated risk tool to predict stroke risk, mortality and bleeding risk. RESULTS: The discriminatory value of the GARFIELD-AF risk model was superior to CHA2DS2-VASc for patients with or without anticoagulation. C-statistics (95% CI) for all-cause mortality, ischaemic stroke/systemic embolism and haemorrhagic stroke/major bleeding (treated patients) were: 0.77 (0.76 to 0.78), 0.69 (0.67 to 0.71) and 0.66 (0.62 to 0.69), respectively, for the GARFIELD-AF risk models, and 0.66 (0.64-0.67), 0.64 (0.61-0.66) and 0.64 (0.61-0.68), respectively, for CHA2DS2-VASc (or HAS-BLED for bleeding). In very low to low risk patients (CHA2DS2-VASc 0 or 1 (men) and 1 or 2 (women)), the CHA2DS2-VASc and HAS-BLED (for bleeding) scores offered weak discriminatory value for mortality, stroke/systemic embolism and major bleeding. C-statistics for the GARFIELD-AF risk tool were 0.69 (0.64 to 0.75), 0.65 (0.56 to 0.73) and 0.60 (0.47 to 0.73) for each end point, respectively, versus 0.50 (0.45 to 0.55), 0.59 (0.50 to 0.67) and 0.55 (0.53 to 0.56) for CHA2DS2-VASc (or HAS-BLED for bleeding). Upon validation in the ORBIT-AF population, C-statistics showed that the GARFIELD-AF risk tool was effective for predicting 1-year all-cause mortality using the full and simplified model for all-cause mortality: C-statistics 0.75 (0.73 to 0.77) and 0.75 (0.73 to 0.77), respectively, and for predicting for any stroke or systemic embolism over 1 year, C-statistics 0.68 (0.62 to 0.74). CONCLUSIONS: Performance of the GARFIELD-AF risk tool was superior to CHA2DS2-VASc in predicting stroke and mortality and superior to HAS-BLED for bleeding, overall and in lower risk patients. The GARFIELD-AF tool has the potential for incorporation in routine electronic systems, and for the first time, permits simultaneous evaluation of ischaemic stroke, mortality and bleeding risks. CLINICAL TRIAL REGISTRATION: URL: http://www.clinicaltrials.gov. Unique identifier for GARFIELD-AF (NCT01090362) and for ORBIT-AF (NCT01165710)
    corecore