15 research outputs found

    Metabolic Transition in Caenorhabditis elegans Dauer Larva

    Get PDF
    Under unfavorable environmental conditions Caenorhabditis elegans larvae enter a dauer stage which is a specialized non-feeding larval stage. In the dauer stage, worms display astonishingly low metabolism, which allows them to adapt themselves to environmental stress and to dwell without food for several months. Dauer larvae can enter into the reproductive larval stage, when environmental conditions become favorable. In this study, the metabolic transition of dauers into the reproductive larval stage is analyzed in detail: a. During the exit of dauers, several metabolic traits were examined. Primarily, dauer larva initiates the metabolic transition by activating feeding, which is followed by upregulated oxygen consumption and mitochondrial remodeling, as well as enhanced protein synthesis. b. To better understand the metabolic transition, inhibitors of the dauer exit were introduced. Lithium ions were shown to inhibit the transition of dauers to reproductive larvae and prevent the upregulation of metabolic activities required for this process. c. In liquid culture, the transition from the dauer to the reproductive larva is also inhibited, presumably because of the hypoxic character of the liquid culture. Thus, hypoxia has a negative effect on the metabolic transition. d. In the course of our investigation we discovered that the dauer larva is not a closed system but indeed, it can dwell on the externally available ethanol as a carbon source by incorporating it into the energy metabolism. This allows dauers to survive for longer periods in the absence of bacteria, the preferred food of worms. These findings clarify the nature of dauers, how they utilize distinct pathways during the metabolic transition and how they take advantage of the externally available carbon source. These results may in the future enable us to elucidate the complex pathways of metabolism, as well as the ways in which it can be regulated

    Metabolic Transition in Caenorhabditis elegans Dauer Larva

    Get PDF
    Under unfavorable environmental conditions Caenorhabditis elegans larvae enter a dauer stage which is a specialized non-feeding larval stage. In the dauer stage, worms display astonishingly low metabolism, which allows them to adapt themselves to environmental stress and to dwell without food for several months. Dauer larvae can enter into the reproductive larval stage, when environmental conditions become favorable. In this study, the metabolic transition of dauers into the reproductive larval stage is analyzed in detail: a. During the exit of dauers, several metabolic traits were examined. Primarily, dauer larva initiates the metabolic transition by activating feeding, which is followed by upregulated oxygen consumption and mitochondrial remodeling, as well as enhanced protein synthesis. b. To better understand the metabolic transition, inhibitors of the dauer exit were introduced. Lithium ions were shown to inhibit the transition of dauers to reproductive larvae and prevent the upregulation of metabolic activities required for this process. c. In liquid culture, the transition from the dauer to the reproductive larva is also inhibited, presumably because of the hypoxic character of the liquid culture. Thus, hypoxia has a negative effect on the metabolic transition. d. In the course of our investigation we discovered that the dauer larva is not a closed system but indeed, it can dwell on the externally available ethanol as a carbon source by incorporating it into the energy metabolism. This allows dauers to survive for longer periods in the absence of bacteria, the preferred food of worms. These findings clarify the nature of dauers, how they utilize distinct pathways during the metabolic transition and how they take advantage of the externally available carbon source. These results may in the future enable us to elucidate the complex pathways of metabolism, as well as the ways in which it can be regulated

    Variable kinship patterns in Neolithic Anatolia revealed by ancient genomes

    Get PDF
    The social organization of the first fully sedentary societies that emerged during the Neolithic period in Southwest Asia remains enigmatic, mainly because material culture studies provide limited insight into this issue. However, because Neolithic Anatolian communities often buried their dead beneath domestic buildings, household composition and social structure can be studied through these human remains. Here, we describe genetic relatedness among co-burials associated with domestic buildings in Neolithic Anatolia using 59 ancient genomes, including 22 new genomes from Aşıklı Höyük and Çatalhöyük. We infer pedigree relationships by simultaneously analyzing multiple types of information, including autosomal and X chromosome kinship coefficients, maternal markers, and radiocarbon dating. In two early Neolithic villages dating to the 9th and 8th millennia BCE, Aşıklı Höyük and Boncuklu, we discover that siblings and parent-offspring pairings were frequent within domestic structures, which provides the first direct indication of close genetic relationships among co-burials. In contrast, in the 7th millennium BCE sites of Çatalhöyük and Barcın, where we study subadults interred within and around houses, we find close genetic relatives to be rare. Hence, genetic relatedness may not have played a major role in the choice of burial location at these latter two sites, at least for subadults. This supports the hypothesis that in Çatalhöyük, and possibly in some other Neolithic communities, domestic structures may have served as burial location for social units incorporating biologically unrelated individuals. Our results underscore the diversity of kin structures in Neolithic communities during this important phase of sociocultural development.Additional co-authors: Hasan Can Gemici, Arda Sevkar, Nihan Dilşad Dağtaş, Gülşah Merve Kılınç, Donovan Adams, Arielle R. Munters, Ekin Sağlıcan, Marco Milella, Eline M.J. Schotsmans, Erinç Yurtman, Mehmet Çetin, Sevgi Yorulmaz, N. Ezgi Altınışık, Ayshin Ghalichi, Anna Juras, C. Can Bilgin, Torsten Günther, Jan Storå, Mattias Jakobsson, Maurice de Kleijn, Gökhan Mustafaoğlu, Andrew Fairbairn, Jessica Pearson, İnci Togan, Nurcan Kayacan, Arkadiusz Marciniak, Clark Spencer Larsen, Ian Hodder, Çiğdem Atakuman, Marin Pilloud, Elif Sürer, Fokke Gerritsen, Rana Özbal, Douglas Baird, Yılmaz Selim Erdal, Güneş Duru, Mihriban Özbaşaran, Scott D. Haddow, Christopher J. Knüsel, Anders Götherström, Füsun Özer, Mehmet Some

    Spatial and temporal heterogeneity in human mobility patterns in Holocene Southwest Asia and the East Mediterranean

    Get PDF
    We present a spatiotemporal picture of human genetic diversity in Anatolia, Iran, Levant, South Caucasus, and the Aegean, a broad region that experienced the earliest Neolithic transition and the emergence of complex hierarchical societies. Combining 35 new ancient shotgun genomes with 382 ancient and 23 present-day published genomes, we found that genetic diversity within each region steadily increased through the Holocene. We further observed that the inferred sources of gene flow shifted in time. In the first half of the Holocene, Southwest Asian and the East Mediterranean populations homogenized among themselves. Starting with the Bronze Age, however, regional populations diverged from each other, most likely driven by gene flow from external sources, which we term “the expanding mobility model.” Interestingly, this increase in inter-regional divergence can be captured by outgroup-f3_3-based genetic distances, but not by the commonly used FST_{ST} statistic, due to the sensitivity of FST_{ST}, but not outgroup-f3_3, to within-population diversity. Finally, we report a temporal trend of increasing male bias in admixture events through the Holocene

    Archaeogenetic analysis of Neolithic sheep from Anatolia suggests a complex demographic history since domestication

    Get PDF
    Yurtman, ozer, Yuncu et al. provide an ancient DNA data set to demonstrate the impact of human activity on the demographic history of domestic sheep. The authors demonstrate that there may have been multiple domestication events with notable changes to the gene pool of European and Anatolian sheep since the Neolithic. Sheep were among the first domesticated animals, but their demographic history is little understood. Here we analyzed nuclear polymorphism and mitochondrial data (mtDNA) from ancient central and west Anatolian sheep dating from Epipaleolithic to late Neolithic, comparatively with modern-day breeds and central Asian Neolithic/Bronze Age sheep (OBI). Analyzing ancient nuclear data, we found that Anatolian Neolithic sheep (ANS) are genetically closest to present-day European breeds relative to Asian breeds, a conclusion supported by mtDNA haplogroup frequencies. In contrast, OBI showed higher genetic affinity to present-day Asian breeds. These results suggest that the east-west genetic structure observed in present-day breeds had already emerged by 6000 BCE, hinting at multiple sheep domestication episodes or early wild introgression in southwest Asia. Furthermore, we found that ANS are genetically distinct from all modern breeds. Our results suggest that European and Anatolian domestic sheep gene pools have been strongly remolded since the Neolithic

    Metabolic Transition in Caenorhabditis elegans Dauer Larva

    No full text
    Under unfavorable environmental conditions Caenorhabditis elegans larvae enter a dauer stage which is a specialized non-feeding larval stage. In the dauer stage, worms display astonishingly low metabolism, which allows them to adapt themselves to environmental stress and to dwell without food for several months. Dauer larvae can enter into the reproductive larval stage, when environmental conditions become favorable. In this study, the metabolic transition of dauers into the reproductive larval stage is analyzed in detail: a. During the exit of dauers, several metabolic traits were examined. Primarily, dauer larva initiates the metabolic transition by activating feeding, which is followed by upregulated oxygen consumption and mitochondrial remodeling, as well as enhanced protein synthesis. b. To better understand the metabolic transition, inhibitors of the dauer exit were introduced. Lithium ions were shown to inhibit the transition of dauers to reproductive larvae and prevent the upregulation of metabolic activities required for this process. c. In liquid culture, the transition from the dauer to the reproductive larva is also inhibited, presumably because of the hypoxic character of the liquid culture. Thus, hypoxia has a negative effect on the metabolic transition. d. In the course of our investigation we discovered that the dauer larva is not a closed system but indeed, it can dwell on the externally available ethanol as a carbon source by incorporating it into the energy metabolism. This allows dauers to survive for longer periods in the absence of bacteria, the preferred food of worms. These findings clarify the nature of dauers, how they utilize distinct pathways during the metabolic transition and how they take advantage of the externally available carbon source. These results may in the future enable us to elucidate the complex pathways of metabolism, as well as the ways in which it can be regulated

    Mobilization of cholesterol induces the transition from quiescence to growth in Caenorhabditis elegans through steroid hormone and mTOR signaling

    No full text
    Abstract Recovery from the quiescent developmental stage called dauer is an essential process in C. elegans and provides an excellent model to understand how metabolic transitions contribute to developmental plasticity. Here we show that cholesterol bound to the small secreted proteins SCL-12 or SCL-13 is sequestered in the gut lumen during the dauer state. Upon recovery from dauer, bound cholesterol undergoes endocytosis into lysosomes of intestinal cells, where SCL-12 and SCL-13 are degraded and cholesterol is released. Free cholesterol activates mTORC1 and is used for the production of dafachronic acids. This leads to promotion of protein synthesis and growth, and a metabolic switch at the transcriptional level. Thus, mobilization of sequestered cholesterol stores is the key event for transition from quiescence to growth, and cholesterol is the major signaling molecule in this process

    MTaxi: A comparative tool for taxon identification of ultra low coverage ancient genomes

    No full text
    A major challenge in zooarchaeology is to morphologically distinguish closely related species' remains, especially using small bone fragments. Shotgun sequencing aDNA from archeological remains and comparative alignment to the candidate species' reference genomes will only apply when reference nuclear genomes of comparable quality are available, and may still fail when coverages are low. Here, we propose an alternative method, MTaxi, that uses highly accessible mitochondrial DNA (mtDNA) to distinguish between pairs of closely related species from ancient DNA sequences. MTaxi utilises mtDNA transversion-type substitutions between pairs of candidate species, assigns reads to either species, and performs a binomial test to determine the sample taxon. We tested MTaxi on sheep/goat and horse/donkey data, between which zooarchaeological classification can be challenging in ways that epitomise our case. The method performed efficiently on simulated ancient genomes down to 0.3x mitochondrial coverage for both sheep/goat and horse/donkey, with no false positives. Trials on n=18 ancient sheep/goat samples and n=10 horse/donkey samples of known species identity also yielded 100% accuracy. Overall, MTaxi provides a straightforward approach to classify closely related species that are difficult to distinguish through zooarchaeological methods using low coverage aDNA data, especially when similar quality reference genomes are unavailable. MTaxi is freely available at https://github.com/goztag/MTaxi

    MTaxi: A comparative tool for taxon identification of ultra low coverage ancient genomes

    No full text
    A major challenge in zooarchaeology is to morphologically distinguish closely related species' remains, especially using small bone fragments. Shotgun sequencing aDNA from archeological remains and comparative alignment to the candidate species' reference genomes will only apply when reference nuclear genomes of comparable quality are available, and may still fail when coverages are low. Here, we propose an alternative method, MTaxi, that uses highly accessible mitochondrial DNA (mtDNA) to distinguish between pairs of closely related species from ancient DNA sequences. MTaxi utilises mtDNA transversion-type substitutions between pairs of candidate species, assigns reads to either species, and performs a binomial test to determine the sample taxon. We tested MTaxi on sheep/goat and horse/donkey data, between which zooarchaeological classification can be challenging in ways that epitomise our case. The method performed efficiently on simulated ancient genomes down to 0.3x mitochondrial coverage for both sheep/goat and horse/donkey, with no false positives. Trials on n=18 ancient sheep/goat samples and n=10 horse/donkey samples of known species identity also yielded 100% accuracy. Overall, MTaxi provides a straightforward approach to classify closely related species that are difficult to distinguish through zooarchaeological methods using low coverage aDNA data, especially when similar quality reference genomes are unavailable. MTaxi is freely available at https://github.com/goztag/MTaxi

    MTaxi: A comparative tool for taxon identification of ultra low coverage ancient genomes

    No full text
    A major challenge in zooarchaeology is to morphologically distinguish closely related species' remains, especially using small bone fragments. Shotgun sequencing aDNA from archeological remains and comparative alignment to the candidate species' reference genomes will only apply when reference nuclear genomes of comparable quality are available, and may still fail when coverages are low. Here, we propose an alternative method, MTaxi, that uses highly accessible mitochondrial DNA (mtDNA) to distinguish between pairs of closely related species from ancient DNA sequences. MTaxi utilises mtDNA transversion-type substitutions between pairs of candidate species, assigns reads to either species, and performs a binomial test to determine the sample taxon. We tested MTaxi on sheep/goat and horse/donkey data, between which zooarchaeological classification can be challenging in ways that epitomise our case. The method performed efficiently on simulated ancient genomes down to 0.5x mitochondrial coverage for both sheep/goat and horse/donkey, with no false positives. Trials on n=18 ancient sheep/goat samples and n=10 horse/donkey samples of known species identity also yielded 100% accuracy. Overall, MTaxi provides a straightforward approach to classify closely related species that are compelling to distinguish through zooarchaeological methods using low coverage aDNA data, especially when similar quality reference genomes are unavailable. MTaxi is freely available at https://github.com/goztag/MTaxi
    corecore