7 research outputs found

    "Jasper Jones" as a Window into Australia’s Aboriginal history

    Get PDF
    Jasper Jones (2017) is an Australian film adaptation of Craig Silvey’s 2009 novel of the same name. The film is directed by Arrernte woman Rachel Perkins, who founded Blackfella Films in 1992 and has since been heading the initiative to include more Indigenous representation on screen. With an Aboriginal character, Jasper Jones, at the forefront of the story, the film presents a window into the lives of Aboriginal people living in 1960’s white Australia

    Low-dose betamethasone-acetate for fetal lung maturation in preterm sheep

    Get PDF
    BackgroundAntenatal steroids are standard of care for women who are at risk of preterm delivery; however, antenatal steroid dosing and formulation have not been evaluated adequately. The standard clinical 2-dose treatment with betamethasone-acetate+betamethasone-phosphate is more effective than 2 doses of betamethasone-phosphate for the induction of lung maturation in preterm fetal sheep. We hypothesized that the slowly released betamethasone-acetate component induces similar lung maturation to betamethasone-phosphate+betamethasone-acetate with decreased dose and fetal exposure.ObjectiveThe purpose of this study was to investigate pharmacokinetics and fetal lung maturation of antenatal betamethasone-acetate in preterm fetal sheep.Study designGroups of 10 singleton-pregnant ewes received 1 or 2 intramuscular doses 24 hours apart of 0.25 mg/kg/dose of betamethasone-phosphate+betamethasone-acetate (the standard of care dose) or 1 intramuscular dose of 0.5 mg/kg, 0.25 mg/kg, or 0.125 mg/kg of betamethasone-acetate. Fetuses were delivered 48 hours after the first injection at 122 days of gestation (80% of term) and ventilated for 30 minutes, with ventilator settings, compliance, vital signs, and blood gas measurements recorded every 10 minutes. After ventilation, we measured static lung pressure-volume curves and sampled the lungs for messenger RNA measurements. Other groups of pregnant ewes and fetuses were catheterized and treated with intramuscular injections of betamethasone-phosphate 0.125 mg/kg, betamethasone-acetate 0.125 mg/kg, or betamethasone-acetate 0.5 mg/kg. Maternal and fetal betamethasone concentrations in plasma were measured for 24 hours.ResultsAll betamethasone-treated groups had increased messenger RNA expression of surfactant proteins A, B, and C, ATP-binding cassette subfamily A member 3, and aquaporin-5 compared with control animals. Treatment with 1 dose of intramuscular betamethasone-acetate 0.125mg/kg improved dynamic and static lung compliance, gas exchange, and ventilation efficiency similarly to the standard treatment of 2 doses of 0.25 m/kg of betamethasone-acetate+betamethasone-phosphate. Betamethasone-acetate 0.125 mg/kg resulted in lower maternal and fetal peak plasma concentrations and decreased fetal exposure to betamethasone compared with betamethasone-phosphate 0.125 mg/kg.ConclusionA single dose of betamethasone-acetate results in similar fetal lung maturation as the 2-dose clinical formulation of betamethasone-phosphate+betamethasone-acetate with decreased fetal exposure to betamethasone. A lower dose of betamethasone-acetate may be an effective alternative to induce fetal lung maturation with less risk to the fetus

    Stratified analyses refine association between TLR7 rare variants and severe COVID-19

    No full text
    Summary: Despite extensive global research into genetic predisposition for severe COVID-19, knowledge on the role of rare host genetic variants and their relation to other risk factors remains limited. Here, 52 genes with prior etiological evidence were sequenced in 1,772 severe COVID-19 cases and 5,347 population-based controls from Spain/Italy. Rare deleterious TLR7 variants were present in 2.4% of young (<60 years) cases with no reported clinical risk factors (n = 378), compared to 0.24% of controls (odds ratio [OR] = 12.3, p = 1.27 × 10−10). Incorporation of the results of either functional assays or protein modeling led to a pronounced increase in effect size (ORmax = 46.5, p = 1.74 × 10−15). Association signals for the X-chromosomal gene TLR7 were also detected in the female-only subgroup, suggesting the existence of additional mechanisms beyond X-linked recessive inheritance in males. Additionally, supporting evidence was generated for a contribution to severe COVID-19 of the previously implicated genes IFNAR2, IFIH1, and TBK1. Our results refine the genetic contribution of rare TLR7 variants to severe COVID-19 and strengthen evidence for the etiological relevance of genes in the interferon signaling pathway

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    No full text
    Altres ajuts: Department of Health and Social Care (DHSC); Illumina; LifeArc; Medical Research Council (MRC); UKRI; Sepsis Research (the Fiona Elizabeth Agnew Trust); the Intensive Care Society, Wellcome Trust Senior Research Fellowship (223164/Z/21/Z); BBSRC Institute Program Support Grant to the Roslin Institute (BBS/E/D/20002172, BBS/E/D/10002070, BBS/E/D/30002275); UKRI grants (MC_PC_20004, MC_PC_19025, MC_PC_1905, MRNO2995X/1); UK Research and Innovation (MC_PC_20029); the Wellcome PhD training fellowship for clinicians (204979/Z/16/Z); the Edinburgh Clinical Academic Track (ECAT) programme; the National Institute for Health Research, the Wellcome Trust; the MRC; Cancer Research UK; the DHSC; NHS England; the Smilow family; the National Center for Advancing Translational Sciences of the National Institutes of Health (CTSA award number UL1TR001878); the Perelman School of Medicine at the University of Pennsylvania; National Institute on Aging (NIA U01AG009740); the National Institute on Aging (RC2 AG036495, RC4 AG039029); the Common Fund of the Office of the Director of the National Institutes of Health; NCI; NHGRI; NHLBI; NIDA; NIMH; NINDS.Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care or hospitalization after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes-including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)-in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease

    Search for intermediate-mass black hole binaries in the third observing run of Advanced LIGO and Advanced Virgo

    No full text
    International audienceIntermediate-mass black holes (IMBHs) span the approximate mass range 100−105 M⊙, between black holes (BHs) that formed by stellar collapse and the supermassive BHs at the centers of galaxies. Mergers of IMBH binaries are the most energetic gravitational-wave sources accessible by the terrestrial detector network. Searches of the first two observing runs of Advanced LIGO and Advanced Virgo did not yield any significant IMBH binary signals. In the third observing run (O3), the increased network sensitivity enabled the detection of GW190521, a signal consistent with a binary merger of mass ∌150 M⊙ providing direct evidence of IMBH formation. Here, we report on a dedicated search of O3 data for further IMBH binary mergers, combining both modeled (matched filter) and model-independent search methods. We find some marginal candidates, but none are sufficiently significant to indicate detection of further IMBH mergers. We quantify the sensitivity of the individual search methods and of the combined search using a suite of IMBH binary signals obtained via numerical relativity, including the effects of spins misaligned with the binary orbital axis, and present the resulting upper limits on astrophysical merger rates. Our most stringent limit is for equal mass and aligned spin BH binary of total mass 200 M⊙ and effective aligned spin 0.8 at 0.056 Gpc−3 yr−1 (90% confidence), a factor of 3.5 more constraining than previous LIGO-Virgo limits. We also update the estimated rate of mergers similar to GW190521 to 0.08 Gpc−3 yr−1.Key words: gravitational waves / stars: black holes / black hole physicsCorresponding author: W. Del Pozzo, e-mail: [email protected]† Deceased, August 2020
    corecore