30 research outputs found

    The effect of previous wingate performance using one body region on subsequent wingate performance using a different body region

    Get PDF
    The 30 second Wingate Anaerobic Test (WAnT) is the gold standard measure of anaerobic performance. The present investigation aimed to determine if a previous WAnT using one body region significantly affected a subsequent WAnT using a different body region. Twelve male university students (n = 12, 23 ± 2 years, 84 ± 16.1 kg, 178.5 ± 7.4 cm) volunteered to complete two repeated WAnT protocols (either lower body WAnT followed by an upper body WAnTor vice versa) on two separate testing occasions. The upper body WAnT was conducted on a modified electromagnetically braked cycle ergometer using a flywheel braking force corresponding to 5% bodyweight. The lower body WAnT was conducted on an electronically braked cycle ergometer using a flywheel braking force corresponding to 7.5% bodyweight. Participants had a 1 minute rest period for transition between WAnTs. Data are reported as mean ± standard deviation. No significant differences were identified in power indices for the lower body between 30 s WAnTs. When the upper body WAnT was performed 2nd, absolute peak power (p < 0.01), mean power (p < 0.001) and relative mean power (p < 0.001) were significantly lower compared to when the upper body WAnT was performed 1st. The value of maximum revolutions per minute was significantly lower (p < 0.001) when the upper body WAnT was performed after the lower body WAnT, compared to when it was performed 1st (193.3 ± 11.4 1st vs 179.8 ± 14.4 2nd). Previous upper body sprint exercise does not significantly affect lower body sprint exercise; however, previous lower body sprint exercise severely compromises subsequent upper body sprint performance

    Owner-Level Taxes and Business Activity

    Full text link

    Guidelines for the use of flow cytometry and cell sorting in immunological studies (third edition)

    Get PDF
    The third edition of Flow Cytometry Guidelines provides the key aspects to consider when performing flow cytometry experiments and includes comprehensive sections describing phenotypes and functional assays of all major human and murine immune cell subsets. Notably, the Guidelines contain helpful tables highlighting phenotypes and key differences between human and murine cells. Another useful feature of this edition is the flow cytometry analysis of clinical samples with examples of flow cytometry applications in the context of autoimmune diseases, cancers as well as acute and chronic infectious diseases. Furthermore, there are sections detailing tips, tricks and pitfalls to avoid. All sections are written and peer‐reviewed by leading flow cytometry experts and immunologists, making this edition an essential and state‐of‐the‐art handbook for basic and clinical researchers.DFG, 389687267, Kompartimentalisierung, Aufrechterhaltung und Reaktivierung humaner Gedächtnis-T-Lymphozyten aus Knochenmark und peripherem BlutDFG, 80750187, SFB 841: Leberentzündungen: Infektion, Immunregulation und KonsequenzenEC/H2020/800924/EU/International Cancer Research Fellowships - 2/iCARE-2DFG, 252623821, Die Rolle von follikulären T-Helferzellen in T-Helferzell-Differenzierung, Funktion und PlastizitätDFG, 390873048, EXC 2151: ImmunoSensation2 - the immune sensory syste

    Author Correction:Study of 300,486 individuals identifies 148 independent genetic loci influencing general cognitive function

    Get PDF
    Christina M. Lill, who contributed to analysis of data, was inadvertently omitted from the author list in the originally published version of this article. This has now been corrected in both the PDF and HTML versions of the article

    Modelling human choices: MADeM and decision‑making

    Get PDF
    Research supported by FAPESP 2015/50122-0 and DFG-GRTK 1740/2. RP and AR are also part of the Research, Innovation and Dissemination Center for Neuromathematics FAPESP grant (2013/07699-0). RP is supported by a FAPESP scholarship (2013/25667-8). ACR is partially supported by a CNPq fellowship (grant 306251/2014-0)

    Assessment of the Cost–Benefit Literature on Early Childhood Education for Vulnerable Children

    No full text
    Given international interest in evidence-informed early education policy, we sought to interpret what is often a confusing literature on the performance of early childhood education programs. We explore whether they represent a good return on investment and the factors affecting their transferability. A systematic review was conducted to identify all cost–benefit (C-B) studies of center-based programs enrolling disadvantaged children prior to age 5 compared with a matched group. From a search across all pertinent databases in 2013, 13 economic evaluations relating to six distinct programs were identified that met the inclusion criteria. Of the six programs, half were reported as producing a substantial net benefit (benefits considerably greater than cost) representing a good investment, while for the other half, costs were greater than benefits. We explore possible reasons for the considerable divergence in economic outcomes. The primary driver was the divergent effectiveness of the programs reported in the original outcome studies, and to a lesser extent the scope of benefits included in the economic evaluation and period of follow-up. The context in which programs were delivered and program intensity differed markedly. The two oldest (1960s and 1970s) small randomized control trials of high intensity produced far better outcomes and return on investment than more recent large-scale service delivery. This collection of C-B studies challenges the expectation of good returns on investment from the rollout of early childhood programs. A checklist is provided to assist policy makers with the interpretation of C-B studies

    The Effect of High Intensity Intermittent Exercise on Power Output for the Upper Body

    No full text
    The aim of the present study was to examine and measure high intensity, intermittent upper body performance, in addition to identifying areas of the body that affect the variance in total work done during the 5 × 6 s sprint test. Fifteen males completed an upper body 5 × 6 s sprint test on a modified electro-magnetically braked cycle ergometer, which consisted of five maximal effort sprints, each 6 s in duration, separated by 24 s of passive recovery. A fly wheel braking force corresponding to 5% of the participants’ body weight was used as the implemented resistance level. Body composition was measured using dual-energy X-ray absorptiometry (DEXA). Percent (%) decrement was calculated as 100 − (Total work/ideal work) × 100. Significant (P &lt; 0.05) differences were found between sprints for both absolute and relative (W, W·kg−1, W·kg−1 Lean body mass (LBM) and W·kg−1 Upper body lean body mass (UBLBM)) peak (PP) and mean (MP) power. The % decrement in total work done over the five sprints was 11.4%. Stepwise multiple linear regression analysis revealed that UBLBM accounts for 87% of the variance in total work done during the upper body 5 × 6 s sprint test. These results provide a descriptive analysis of upper body, high intensity intermittent exercise, demonstrating that PP and MP output decreased significantly during the upper body 5 × 6 s sprint test

    Similar rates of fat oxidation during graded submaximal exercise in women of different body composition

    No full text
    International audienceBackground Moderate intensity exercise ranging 40-60% of maximum oxygen uptake is advised to promote energy expenditure and fat oxidation in overweight and obese people. Although fat oxidation has been shown to be highly variable among individual, there is still a relative uncertainty regarding exercise prescription for women specifically. This article aimed to determine whether indicators of body composition can be used to narrow the exercise intensity range for exercise prescription in women. Methods A total of 35 healthy women (age 30.8 +/- 9.5 yr) classified according to their BMI in normal weight (NOR; &lt;= 24.9 kg.m(2)), overweight (OVW; 25-29.9 kg.m(2)) and obese groups (OBE; &gt;= 30 kg.m(2)) completed a submaximal graded test (intensities eliciting similar to 30%, 40%, 50% and 60% of maximum oxygen uptake). Blood lactate, perceived exertion and absolute and relative substrate oxidation for fat (OXFAT) and carbohydrates (OXCHO) were measured at each stage. Results Perceived exertion and blood lactate increased as a function of exercise but did not differ across groups. There were no significant changes in absolute and relative OXFAT across groups, or as a function of exercise intensity. Peak OXFAT occurred at the 40%, 50% and 40% stages for NOR, OVW and OBE groups, respectively, with no significant differences across groups. Conclusion We measured no differences, but considerable inter-individual variation, in fat oxidation in women of different body composition. This result is in agreement with previous research based on exercise performed at constant rate and in independent participant groups. Our findings do not support the fat oxidation hypothesis, and further emphasise the perspective that exercise prescription should be individualised and likely be based on considerations other than substrate oxidation
    corecore