159 research outputs found
On the friction coefficient of straight-chain aggregates
A methodology to calculate the friction coefficient of an aggregate in the
continuum regime is proposed. The friction coefficient and the monomer
shielding factors, aggregate-average or individual, are related to the
molecule-aggregate collision rate that is obtained from the molecular diffusion
equation with an absorbing boundary condition on the aggregate surface.
Calculated friction coefficients of straight chains are in very good agreement
with previous results, suggesting that the friction coefficients may be
accurately calculated from the product of the collision rate and an average
momentum transfer,the latter being independent of aggregate morphology.
Langevin-dynamics simulations show that the diffusive motion of straight-chain
aggregates may be described either by a monomer-dependent or an
aggregate-average random force, if the shielding factors are appropriately
chosen.Comment: 22 pages, 6 figures, revised version. To appear in the Journal of
Colloid and Interface Scienc
Numerical determination of the material properties of porous dust cakes
The formation of planetesimals requires the growth of dust particles through
collisions. Micron-sized particles must grow by many orders of magnitude in
mass. In order to understand and model the processes during this growth, the
mechanical properties, and the interaction cross sections of aggregates with
surrounding gas must be well understood. Recent advances in experimental
(laboratory) studies now provide the background for pushing numerical aggregate
models onto a new level. We present the calibration of a previously tested
model of aggregate dynamics. We use plastic deformation of surface asperities
as the physical model to bring critical velocities for sticking into accordance
with experimental results. The modified code is then used to compute
compression strength and the velocity of sound in the aggregate at different
densities. We compare these predictions with experimental results and conclude
that the new code is capable of studying the properties of small aggregates.Comment: Accepted for publication in A&
Performance prediction of PM 2.5 removal of real fibrous filters with a novel model considering rebound effect
Fibrous filters have been proved to be one of the most cost-effective way of particulate matters (specifically PM 2.5) purification. However, due to the complex structure of real fibrous filters, it is difficult to accurately predict the performance of PM2.5 removal. In this study, a new 3D filtration modeling approach is proposed to predict the removal efficiencies of particles by real fibrous filters, by taking the particle rebound effect into consideration. A real filter is considered and its SEM image-based 3D structure is established for modeling. Then based on the simulation result, the filtration efficiency and pressure drop are calculated. The obtained values are compared and validated by experimental data and empirical correlations, and the results are proven to be in good agreement with each other. At last, influences of various parameters including the face velocity, particle size and the particle rebound effect on the filtration performance of fibrous filters are investigated. The results provide useful guidelines for the optimization and enhancement of PM2.5 removal by fibrous filter
Experimental and Modeling Studies of Secondary Organic Aerosol Formation and Some Applications to the Marine Boundary Layer
A series of controlled experiments were carried out in the Calspan Corporation\u27s 600 m3environmental chamber to study some secondary organic aerosol formation processes. Three precursor-ozone systems were studied: cyclopentene-ozone, cyclohexene-ozone, and α-pineneozone. Additionally, SO2 was added to the initial gas mixture in several instances and was likely present at trace levels in the ostensibly organic-only experiments. It was found that all three systems readily formed new submicron aerosols at very low reactant levels. The chemical composition of formed aerosols was consistent with some previous studies, but the yields of organic products were found to be lower in the Calspan experiments. A three-step procedure is proposed to explain the observed particle nucleation behavior: HO · production → H2SO4 formation → H2SO4-H2O (perhaps together with NH3) homogeneous nucleation. It is also proposed that some soluble organic products would partition into the newly formed H2SO4-H2O nuclei, enhance water condensation, and quickly grow these nuclei into a larger size range. While the observations in the two cycloolefin-ozone systems could be well explained by these proposed mechanisms, the exact nature of the nucleation process in the α-pinene-ozone system remains rather opaque and could be the result of nucleation involving certain organics. The results from three simple modeling studies further support these proposals. Their applicability to the marine boundary layer (MBL) is also discussed in some detail. Particularly, such a particle nucleation and growth process could play an important role in secondary aerosol formation and, quite likely, CCN formation as well in certain MBL regions
Biophysical Studies of the Membrane-Embedded and Cytoplasmic Forms of the Glucose-Specific Enzyme II of the E. coli Phosphotransferase System (PTS)
The glucose Enzyme II transporter complex of the Escherichia coli phosphotransferase system (PTS) exists in at least two physically distinct forms: a membrane-integrated dimeric form, and a cytoplasmic monomeric form, but little is known about the physical states of these enzyme forms. Six approaches were used to evaluate protein-protein and protein-lipid interactions in this system. Fluorescence energy transfer (FRET) using MBP-IIGlc-YFP and MBP-IIGlc-CFP revealed that the homodimeric Enzyme II complex in cell membranes is stable (FRET-) but can be dissociated and reassociated to the heterodimer only in the presence of Triton X100 (FRET+). The monomeric species could form a heterodimeric species (FRET+) by incubation and purification without detergent exposure. Formaldehyde cross linking studies, conducted both in vivo and in vitro, revealed that the dimeric MBP-IIGlc activity decreased dramatically with increasing formaldehyde concentrations due to both aggregation and activity loss, but that the monomeric MBP-IIGlc retained activity more effectively in response to the same formaldehyde treatments, and little or no aggregation was observed. Electron microscopy of MBP-IIGlc indicated that the dimeric form is larger than the monomeric form. Dynamic light scattering confirmed this conclusion and provided quantitation. NMR analyses provided strong evidence that the dimeric form is present primarily in a lipid bilayer while the monomeric form is present as micelles. Finally, lipid analyses of the different fractions revealed that the three lipid species (PE, PG and CL) are present in all fractions, but the monomeric micellar structure contains a higher percentage of anionic lipids (PG & CL) while the dimeric bilayer form has a higher percentage of zwitterion lipids (PE). Additionally, evidence for a minor dimeric micellar species, possibly an intermediate between the monomeric micellar and the dimeric bilayer forms, is presented. These results provide convincing evidence for interconvertible physical forms of Enzyme-IIGlc
- …