771 research outputs found

    Structure of the hDmc1-ssDNA filament reveals the principles of its architecture

    Get PDF
    In eukaryotes, meiotic recombination is a major source of genetic diversity, but its defects in humans lead to abnormalities such as Down's, Klinefelter's and other syndromes. Human Dmc1 (hDmc1), a RecA/Rad51 homologue, is a recombinase that plays a crucial role in faithful chromosome segregation during meiosis. The initial step of homologous recombination occurs when hDmc1 forms a filament on single-stranded (ss) DNA. However the structure of this presynaptic complex filament for hDmc1 remains unknown. To compare hDmc1-ssDNA complexes to those known for the RecA/Rad51 family we have obtained electron microscopy (EM) structures of hDmc1-ssDNA nucleoprotein filaments using single particle approach. The EM maps were analysed by docking crystal structures of Dmc1, Rad51, RadA, RecA and DNA. To fully characterise hDmc1-DNA complexes we have analysed their organisation in the presence of Ca2+, Mg2+, ATP, AMP-PNP, ssDNA and dsDNA. The 3D EM structures of the hDmc1-ssDNA filaments allowed us to elucidate the principles of their internal architecture. Similar to the RecA/Rad51 family, hDmc1 forms helical filaments on ssDNA in two states: extended (active) and compressed (inactive). However, in contrast to the RecA/Rad51 family, and the recently reported structure of hDmc1-double stranded (ds) DNA nucleoprotein filaments, the extended (active) state of the hDmc1 filament formed on ssDNA has nine protomers per helical turn, instead of the conventional six, resulting in one protomer covering two nucleotides instead of three. The control reconstruction of the hDmc1-dsDNA filament revealed 6.4 protein subunits per helical turn indicating that the filament organisation varies depending on the DNA templates. Our structural analysis has also revealed that the N-terminal domain of hDmc1 accomplishes its important role in complex formation through domain swapping between adjacent protomers, thus providing a mechanistic basis for coordinated action of hDmc1 protomers during meiotic recombination

    Presentation and Outcome of Tuberculous Meningitis in a High HIV Prevalence Setting

    Get PDF
    Mycobacterium tuberculosis is a common, devastating cause of meningitis in HIV-infected persons. Due to international rollout programs, access to antiretroviral therapy (ART) is increasing globally. Starting patients with HIV-associated tuberculous meningitis (TBM) on ART during tuberculosis (TB) treatment may increase survival in these patients. We undertook this study to describe causes of meningitis at a secondary-level hospital in a high HIV/TB co-infection setting and to determine predictors of mortality in patients with TBM.A retrospective review of cerebrospinal fluid findings and clinical records over a six-month period (March 2009-August 2009). Definite, probable and possible TBM were diagnosed according to published case definitions.TBM was diagnosed in 120/211 patients (57%) with meningitis. In 106 HIV-infected patients with TBM, six-month all-cause mortality was lower in those who received antiretroviral therapy (ART) during TB treatment; hazard ratio = 0.30 (95% CI = 0.08-0.82). Factors associated with inpatient mortality in HIV-infected patients were 1) low CD4(+) count at presentation; adjusted odds ratio (AOR) = 1.4 (95% confidence interval [CI] = 1.03-1.96) per 50 cells/µL drop in CD4(+) count and, 2) higher British Medical Research Council TBM disease grade (2 or 3 versus 1); AOR = 4.8 (95% CI = 1.45-15.87).Starting ART prior to or during TB treatment may be associated with lower mortality in patients with HIV-associated TBM. Advanced HIV and worse stage of TBM disease predict in-hospital mortality in patients presenting with TBM

    Top Quark Mass Measurement from Dilepton Events at CDF II with the Matrix-Element Method

    Get PDF
    We describe a measurement of the top quark mass using events with two charged leptons collected by the CDF II detector from ppˉp\bar{p} collisions with s=1.96\sqrt s = 1.96 TeV at the Fermilab Tevatron. The likelihood in top mass is calculated for each event by convoluting the leading order matrix element describing qqˉttˉbνbˉνq\bar{q} \to t\bar{t} \to b\ell\nu_{\ell}\bar{b}\ell'\nu_{\ell'} with detector resolution functions. The presence of background events in the data sample is modeled using similar calculations involving the matrix elements for major background processes. In a data sample with integrated luminosity of 340 pb1^{-1}, we observe 33 candidate events and measure Mtop=165.2±6.1(stat.)±3.4(syst.) GeV/c2.M_{top} = 165.2 \pm 6.1(\textrm{stat.}) \pm 3.4(\textrm{syst.}) \mathrm{~GeV}/c^2. This measurement represents the first application of this method to events with two charged leptons and is the most precise single measurement of the top quark mass in this channel.Comment: 21 pages, 14 figure

    Search for New Physics in Lepton + Photon + X Events with L=305 pb-1 of ppbar Collisions at roots=1.96 TeV

    Get PDF
    We present results of a search for anomalous production of events containing a charged lepton (either electron or muon) and a photon, both with high transverse momentum, accompanied by additional signatures, X, including missing transverse energy (MET) and additional leptons and photons. We use the same kinematic selection criteria as in a previous CDF search, but with a substantially larger data set, 305 pb-1, a ppbar collision energy of 1.96 TeV, and the upgraded CDF II detector. We find 42 Lepton+Photon+MET events versus a standard model expectation of 37.3 +- 5.4 events. The level of excess observed in Run I, 16 events with an expectation of 7.6 +- 0.7 events (corresponding to a 2.7 sigma effect), is not supported by the new data. In the signature of Multi-Lepton+Photon+X we observe 31 events versus an expectation of 23.0 +- 2.7 events. In this sample we find no events with an extra photon or MET and so find no events like the one ee+gg+MET event observed in Run I.Comment: 7 pages, 3 figures, 1 table. Accepted to PR

    Measurement of the Dipion Mass Spectrum in X(3872) -> J/Psi Pi+ Pi- Decays

    Get PDF
    We measure the dipion mass spectrum in X(3872)--> J/Psi Pi+ Pi- decays using 360 pb-1 of pbar-p collisions at 1.96 TeV collected with the CDF II detector. The spectrum is fit with predictions for odd C-parity (3S1, 1P1, and 3DJ) charmonia decaying to J/Psi Pi+ Pi-, as well as even C-parity states in which the pions are from Rho0 decay. The latter case also encompasses exotic interpretations, such as a D0-D*0Bar molecule. Only the 3S1 and J/Psi Rho hypotheses are compatible with our data. Since 3S1 is untenable on other grounds, decay via J/Psi Rho is favored, which implies C=+1 for the X(3872). Models for different J/Psi-Rho angular momenta L are considered. Flexibility in the models, especially the introduction of Rho-Omega interference, enable good descriptions of our data for both L=0 and 1.Comment: 7 pages, 4 figures -- Submitted to Phys. Rev. Let

    Search for Higgs Boson Decaying to b-bbar and Produced in Association with W Bosons in p-pbar Collisions at sqrt{s}=1.96 TeV

    Get PDF
    We present a search for Higgs bosons decaying into b-bbar and produced in association with W bosons in p-pbar collisions at sqrt{s}=1.96 TeV. This search uses 320 pb-1 of the dataset accumulated by the upgraded Collider Detector at Fermilab. Events are selected that have a high-transverse momentum electron or muon, missing transverse energy, and two jets, one of which is consistent with a hadronization of a b quark. Both the number of events and the dijet mass distribution are consistent with standard model background expectations, and we set 95% confidence level upper limits on the production cross section times branching ratio for the Higgs boson or any new particle with similar decay kinematics. These upper limits range from 10 pb for mH=110 GeV/c2 to 3 pb for mH=150 GeV/c2.Comment: 7 pages, 3 figures; updated title to published versio

    Search for Second-Generation Scalar Leptoquarks in ppˉ\bm{p \bar{p}} Collisions at s\sqrt{s}=1.96 TeV

    Get PDF
    Results on a search for pair production of second generation scalar leptoquark in ppˉp \bar{p} collisions at s\sqrt{s}=1.96 TeV are reported. The data analyzed were collected by the CDF detector during the 2002-2003 Tevatron Run II and correspond to an integrated luminosity of 198 pb1^{-1}. Leptoquarks (LQ) are sought through their decay into (charged) leptons and quarks, with final state signatures represented by two muons and jets and one muon, large transverse missing energy and jets. We observe no evidence for LQLQ production and derive 95% C.L. upper limits on the LQLQ production cross sections as well as lower limits on their mass as a function of β\beta, where β\beta is the branching fraction for LQμqLQ \to \mu q.Comment: 9 pages (3 author list) 5 figure

    Search for anomalous semileptonic decay of heavy flavor hadrons produced in association with a W boson at CDF II

    Get PDF
    We present a search for anomalous semileptonic decays of heavy flavor hadrons produced in association with a WW boson, in proton-antiproton collisions at sqrt{s}=1.96 TeV. We use 162 pb-1 of data collected with the CDF II detector at the Fermilab Tevatron Collider. We select events with one W boson and at least one jet with an identified secondary vertex. In the jets with a secondary vertex we look for a semileptonic decay to a muon. We compare the number of jets with both a secondary vertex and a semileptonic decay, and the kinematic properties of these jets, with the standard model expectation of W plus heavy flavor production and decay. No discrepancy is seen between the observation and the expectation, and we set limits on the production cross section of a B-like hadron with an anomalously high semileptonic branching ratio.Comment: 8 pages, 2 figures, submitted to PRD-RC; replaced to adjust the page forma

    Studying the Underlying Event in Drell-Yan and High Transverse Momentum Jet Production at the Tevatron

    Get PDF
    We study the underlying event in proton-antiproton collisions by examining the behavior of charged particles (transverse momentum pT > 0.5 GeV/c, pseudorapidity |\eta| < 1) produced in association with large transverse momentum jets (~2.2 fb-1) or with Drell-Yan lepton-pairs (~2.7 fb-1) in the Z-boson mass region (70 < M(pair) < 110 GeV/c2) as measured by CDF at 1.96 TeV center-of-mass energy. We use the direction of the lepton-pair (in Drell-Yan production) or the leading jet (in high-pT jet production) in each event to define three regions of \eta-\phi space; toward, away, and transverse, where \phi is the azimuthal scattering angle. For Drell-Yan production (excluding the leptons) both the toward and transverse regions are very sensitive to the underlying event. In high-pT jet production the transverse region is very sensitive to the underlying event and is separated into a MAX and MIN transverse region, which helps separate the hard component (initial and final-state radiation) from the beam-beam remnant and multiple parton interaction components of the scattering. The data are corrected to the particle level to remove detector effects and are then compared with several QCD Monte-Carlo models. The goal of this analysis is to provide data that can be used to test and improve the QCD Monte-Carlo models of the underlying event that are used to simulate hadron-hadron collisions.Comment: Submitted to Phys.Rev.
    corecore