Search for New Physics in Lepton + Photon $+X$ Events with $305 \mathrm{pb}^{-1}$ of $p \bar{p}$ Collisions at $\sqrt{s}=1.96 \mathrm{TeV}$

A. Abulencia, ${ }^{23}$ D. Acosta, ${ }^{17}$ J. Adelman, ${ }^{13}$ T. Affolder, ${ }^{10}$ T. Akimoto, ${ }^{55}$ M. G. Albrow, ${ }^{16}$ D. Ambrose, ${ }^{16}$ S. Amerio, ${ }^{43}$ D. Amidei, ${ }^{34}$ A. Anastassov, ${ }^{52}$ K. Anikeev, ${ }^{16}$ A. Annovi, ${ }^{18}$ J. Antos, ${ }^{1}$ M. Aoki, ${ }^{55}$ G. Apollinari, ${ }^{16}$ J.-F. Arguin, ${ }^{33}$ T. Arisawa, ${ }^{57}$ A. Artikov, ${ }^{14}$ W. Ashmanskas, ${ }^{16}$ A. Attal, ${ }^{8}$ F. Azfar, ${ }^{42}$ P. Azzi-Bacchetta, ${ }^{43}$ P. Azzurri, ${ }^{46}$ N. Bacchetta, ${ }^{43}$ H. Bachacou, ${ }^{28}$ W. Badgett,,${ }^{16}$ A. Barbaro-Galtieri, ${ }^{28}$ V. E. Barnes, ${ }^{48}$ B. A. Barnett, ${ }^{24}$ S. Baroiant, ${ }^{7}$ V. Bartsch, ${ }^{30}$ G. Bauer, ${ }^{32}$ F. Bedeschi, ${ }^{46}$ S. Behari, ${ }^{24}$ S. Belforte, ${ }^{54}$ G. Bellettini, ${ }^{46}$ J. Bellinger, ${ }^{59}$ A. Belloni, ${ }^{32}$ E. Ben Haim, ${ }^{44}$ D. Benjamin, ${ }^{15}$ A. Beretvas, ${ }^{16}$ J. Beringer,,28 T. Berry, ${ }^{29}$ A. Bhatti, ${ }^{50}$ M. Binkley, ${ }^{16}$ D. Bisello, ${ }^{43}$ R. E. Blair, ${ }^{2}$ C. Blocker, ${ }^{6}$ B. Blumenfeld, ${ }^{24}$ A. Bocci, ${ }^{15}$ A. Bodek, ${ }^{49}$ V. Boisvert, ${ }^{49}$ G. Bolla, ${ }^{48}$ A. Bolshov, ${ }^{32}$ D. Bortoletto, ${ }^{48}$ J. Boudreau, ${ }^{47}$ A. Boveia, ${ }^{10}$ B. Brau, ${ }^{10}$ C. Bromberg, ${ }^{35}$ E. Brubaker, ${ }^{13}$ J. Budagov, ${ }^{14}$ H. S. Budd, ${ }^{49}$ S. Budd, ${ }^{23}$ K. Burkett, ${ }^{16}$ G. Busetto, ${ }^{43}$ P. Bussey, ${ }^{20}$ K. L. Byrum, ${ }^{2}$ S. Cabrera, ${ }^{15}$ M. Campanelli, ${ }^{19}$ M. Campbell, ${ }^{34}$ F. Canelli, ${ }^{8}$ A. Canepa, ${ }^{48}$ D. Carlsmith, ${ }^{59}$ R. Carosi, ${ }^{46}$ S. Carron, ${ }^{15}$ M. Casarsa, ${ }^{54}$ A. Castro, ${ }^{5}$ P. Catastini, ${ }^{46}$ D. Cauz, ${ }^{54}$ M. Cavalli-Sforza, ${ }^{3}$ A. Cerri, ${ }^{28}$ L. Cerrito, ${ }^{42}$ S. H. Chang, ${ }^{27}$ J. Chapman, ${ }^{34}$ Y. C. Chen, ${ }^{1}$ M. Chertok, ${ }^{7}$ G. Chiarelli, ${ }^{46}$ G. Chlachidze, ${ }^{14}$ F. Chlebana, ${ }^{16}$ I. Cho,,${ }^{27}$ K. Cho, ${ }^{27}$ D. Chokheli, ${ }^{14}$ J. P. Chou, ${ }^{21}$ P. H. Chu, ${ }^{23}$ S. H. Chuang, ${ }^{59}$ K. Chung, ${ }^{12}$ W. H. Chung, ${ }^{59}$ Y. S. Chung, ${ }^{49}$ M. Ciljak, ${ }^{46}$ C. I. Ciobanu, ${ }^{23}$ M. A. Ciocci, ${ }^{46}$ A. Clark, ${ }^{19}$ D. Clark, ${ }^{6}$ M. Coca, ${ }^{15}$ G. Compostella, ${ }^{43}$ M. E. Convery, ${ }^{50}$ J. Conway, ${ }^{7}$ B. Cooper, ${ }^{30}$ K. Copic, ${ }^{34}$ M. Cordelli, ${ }^{18}$ G. Cortiana, ${ }^{43}$ F. Cresciolo, ${ }^{46}$ A. Cruz, ${ }^{17}$ C. Cuenca Almenar, ${ }^{7}$ J. Cuevas, ${ }^{11}$ R. Culbertson, ${ }^{16}$ D. Cyr, ${ }^{59}$ S. DaRonco, ${ }^{43}$ S. D'Auria, ${ }^{20}$ M. D'Onofrio, ${ }^{3}$ D. Dagenhart, ${ }^{6}$ P. de Barbaro, ${ }^{49}$ S. De Cecco, ${ }^{51}$ A. Deisher, ${ }^{28}$ G. De Lentdecker, ${ }^{49}$ M. Dell' Orso, ${ }^{46}$ F. Delli Paoli, ${ }^{43}$ S. Demers, ${ }^{49}$ L. Demortier, ${ }^{50}$ J. Deng,,${ }^{15}$ M. Deninno, ${ }^{5}$ D. De Pedis, ${ }^{51}$ P.F. Derwent, ${ }^{16}$ C. Dionisi, ${ }^{51}$ J. R. Dittmann, ${ }^{4}$ P. DiTuro, ${ }^{52}$ C. Dörr, ${ }^{25}$ S. Donati, ${ }^{46}$ M. Donega, ${ }^{19}$ P. Dong, ${ }^{8}$ J. Donini, ${ }^{43}$ T. Dorigo, ${ }^{43}$ S. Dube, ${ }^{52}$ K. Ebina, ${ }^{57}$ J. Efron, ${ }^{39}$ J. Ehlers, ${ }^{19}$ R. Erbacher, ${ }^{7}$ D. Errede, ${ }^{23}$ S. Errede, ${ }^{23}$ R. Eusebi, ${ }^{16}$ H. C. Fang, ${ }^{28}$ S. Farrington, ${ }^{29}$ I. Fedorko, ${ }^{46}$ W. T. Fedorko, ${ }^{13}$ R. G. Feild, ${ }^{60}$ M. Feindt, ${ }^{25}$ J. P. Fernandez, ${ }^{31}$ R. Field, ${ }^{17}$ G. Flanagan, ${ }^{48}$ L. R. Flores-Castillo, ${ }^{47}$ A. Foland, ${ }^{21}$ S. Forrester, ${ }^{7}$ G. W. Foster, ${ }^{16}$ M. Franklin, ${ }^{21}$ J. C. Freeman, ${ }^{28}$ H. Frisch, ${ }^{13}$ I. Furic, ${ }^{13}$ M. Gallinaro, ${ }^{50}$ J. Galyardt, ${ }^{12}$ J. E. Garcia, ${ }^{46}$ M. Garcia Sciveres, ${ }^{28}$ A. F. Garfinkel, ${ }^{48}$ C. Gay, ${ }^{60}$ H. Gerberich, ${ }^{23}$ D. Gerdes, ${ }^{34}$ S. Giagu, ${ }^{51}$ P. Giannetti, ${ }^{46}$ A. Gibson, ${ }^{28}$ K. Gibson, ${ }^{12}$ C. Ginsburg, ${ }^{16}$ N. Giokaris, ${ }^{14}$ K. Giolo, ${ }^{48}$ M. Giordani, ${ }^{54}$ P. Giromini, ${ }^{18}$ M. Giunta, ${ }^{46}$ G. Giurgiu, ${ }^{12}$ V. Glagolev, ${ }^{14}$ D. Glenzinski, ${ }^{16}$ M. Gold, ${ }^{37}$ N. Goldschmidt, ${ }^{34}$ J. Goldstein, ${ }^{42}$ G. Gomez, ${ }^{11}$ G. Gomez-Ceballos, ${ }^{11}$ M. Goncharov, ${ }^{53}$ O. González, ${ }^{31}$ I. Gorelov, ${ }^{37}$ A. T. Goshaw, ${ }^{15}$ Y. Gotra, ${ }^{47}$ K. Goulianos, ${ }^{50}$ A. Gresele, ${ }^{43}$ M. Griffiths, ${ }^{29}$ S. Grinstein, ${ }^{21}$ C. Grosso-Pilcher, ${ }^{13}$ R. C. Group, ${ }^{17}$ U. Grundler, ${ }^{23}$ J. Guimaraes da Costa, ${ }^{21}$ Z. Gunay-Unalan, ${ }^{35}$ C. Haber, ${ }^{28}$ S. R. Hahn, ${ }^{16}$ K. Hahn, ${ }^{45}$ E. Halkiadakis, ${ }^{52}$ A. Hamilton, ${ }^{33}$ B.-Y. Han, ${ }^{49}$ J. Y. Han, ${ }^{49}$ R. Handler, ${ }^{59}$ F. Happacher, ${ }^{18}$ K. Hara, ${ }^{55}$ M. Hare, ${ }^{56}$ S. Harper, ${ }^{42}$ R.F. Harr, ${ }^{58}$ R. M. Harris, ${ }^{16}$ K. Hatakeyama, ${ }^{50}$ J. Hauser, ${ }^{8}$ C. Hays, ${ }^{15}$ A. Heijboer, ${ }^{45}$ B. Heinemann, ${ }^{29}$ J. Heinrich, ${ }^{45}$ M. Herndon, ${ }^{59}$ D. Hidas, ${ }^{15}$ C. S. Hill, ${ }^{10}$ D. Hirschbuehl, ${ }^{25}$ A. Hocker, ${ }^{16}$ A. Holloway, ${ }^{21}$ S. Hou, ${ }^{1}$ M. Houlden, ${ }^{29}$ S.-C. Hsu, ${ }^{9}$ B. T. Huffman, ${ }^{42}$ R. E. Hughes, ${ }^{39}$ J. Huston, ${ }^{35}$ J. Incandela, ${ }^{10}$ G. Introzzi, ${ }^{46}$ M. Iori, ${ }^{51}$ Y. Ishizawa, ${ }^{55}$ A. Ivanov, ${ }^{7}$ B. Iyutin, ${ }^{32}$ E. James,,16 D. Jang, ${ }^{52}$ B. Jayatilaka, ${ }^{34}$ D. Jeans, ${ }^{51}$ H. Jensen, ${ }^{16}$ E. J. Jeon, ${ }^{27}$ S. Jindariani, ${ }^{17}$ M. Jones, ${ }^{48}$ K. K. Joo, ${ }^{27}$ S. Y. Jun, ${ }^{12}$ T. R. Junk, ${ }^{23}$ T. Kamon, ${ }^{53}$ J. Kang, ${ }^{34}$ P. E. Karchin, ${ }^{58}$ Y. Kato, ${ }^{41}$ Y. Kemp, ${ }^{25}$ R. Kephart, ${ }^{16}$ U. Kerzel, ${ }^{25}$ V. Khotilovich, ${ }^{53}$ B. Kilminster, ${ }^{39}$ D. H. Kim, ${ }^{27}$ H.S. Kim, ${ }^{27}$ J. E. Kim, ${ }^{27}$ M. J. Kim, ${ }^{12}$ S. B. Kim, ${ }^{27}$ S. H. Kim, ${ }^{55}$ Y. K. Kim, ${ }^{13}$ L. Kirsch, ${ }^{6}$ S. Klimenko, ${ }^{17}$ M. Klute, ${ }^{32}$ B. Knuteson, ${ }^{32}$ B. R. Ko, ${ }^{15}$ H. Kobayashi, ${ }^{55}$ K. Kondo, ${ }^{57}$ D. J. Kong, ${ }^{27}$ J. Konigsberg, ${ }^{17}$ A. Korytov, ${ }^{17}$ A. V. Kotwal, ${ }^{15}$ A. Kovalev, ${ }^{45}$ A. Kraan, ${ }^{45}$ J. Kraus, ${ }^{23}$ I. Kravchenko, ${ }^{32}$ M. Kreps, ${ }^{25}$ J. Kroll, ${ }^{45}$ N. Krumnack, ${ }^{4}$ M. Kruse, ${ }^{15}$ V. Krutelyov, ${ }^{53}$ S. E. Kuhlmann, ${ }^{2}$ Y. Kusakabe, ${ }^{57}$ S. Kwang, ${ }^{13}$ A. T. Laasanen, ${ }^{48}$ S. Lai, ${ }^{33}$ S. Lami, ${ }^{46}$ S. Lammel, ${ }^{16}$ M. Lancaster, ${ }^{30}$ R. L. Lander, ${ }^{7}$ K. Lannon, ${ }^{39}$ A. Lath, ${ }^{52}$ G. Latino, ${ }^{46}$ I. Lazzizzera, ${ }^{43}$ T. LeCompte, ${ }^{2}$ J. Lee, ${ }^{49}$ J. Lee, ${ }^{27}$ Y. J. Lee, ${ }^{27}$ S. W. Lee, ${ }^{53}$ R. Lefèvre, ${ }^{3}$ N. Leonardo, ${ }^{32}$ S. Leone, ${ }^{46}$ S. Levy, ${ }^{13}$ J. D. Lewis, ${ }^{16}$ C. Lin, ${ }^{60}$ C.S. Lin, ${ }^{16}$ M. Lindgren, ${ }^{16}$ E. Lipeles, ${ }^{9}$ T. M. Liss, ${ }^{23}$ A. Lister, ${ }^{19}$ D. O. Litvintsev, ${ }^{16}$ T. Liu, ${ }^{16}$ N. S. Lockyer, ${ }^{45}$ A. Loginov, ${ }^{36}$ M. Loreti, ${ }^{43}$ P. Loverre, ${ }^{51}$ R.-S. Lu, ${ }^{1}$ D. Lucchesi, ${ }^{43}$ P. Lujan, ${ }^{28}$ P. Lukens, ${ }^{16}$ G. Lungu, ${ }^{17}$ L. Lyons, ${ }^{42}$ J. Lys, ${ }^{28}$ R. Lysak, ${ }^{1}$ E. Lytken, ${ }^{48}$ P. Mack, ${ }^{25}$ D. MacQueen, ${ }^{33}$ R. Madrak, ${ }^{16}$ K. Maeshima, ${ }^{16}$ T. Maki, ${ }^{22}$ P. Maksimovic, ${ }^{24}$ S. Malde, ${ }^{42}$ G. Manca, ${ }^{29}$ F. Margaroli, ${ }^{5}$ R. Marginean, ${ }^{16}$ C. Marino, ${ }^{23}$ A. Martin, ${ }^{60}$ V. Martin, ${ }^{38}$ M. Martínez, ${ }^{3}$ T. Maruyama, ${ }^{55}$ P. Mastrandrea, ${ }^{51}$ H. Matsunaga, ${ }^{55}$ M. E. Mattson, ${ }^{58}$ R. Mazini, ${ }^{33}$ P. Mazzanti, ${ }^{5}$ K. S. McFarland, ${ }^{49}$ P. McIntyre, ${ }^{53}$ R. McNulty, ${ }^{29}$ A. Mehta, ${ }^{29}$ S. Menzemer, ${ }^{11}$ A. Menzione, ${ }^{46}$ P. Merkel, ${ }^{48}$ C. Mesropian, ${ }^{50}$ A. Messina, ${ }^{51}$ M. von der Mey, ${ }^{8}$ T. Miao, ${ }^{16}$ N. Miladinovic, ${ }^{6}$ J. Miles, ${ }^{32}$ R. Miller, ${ }^{35}$ J. S. Miller, ${ }^{34}$ C. Mills, ${ }^{10}$ M. Milnik, ${ }^{25}$ R. Miquel, ${ }^{28}$ A. Mitra, ${ }^{1}$ G. Mitselmakher, ${ }^{17}$ A. Miyamoto, ${ }^{26}$ N. Moggi, ${ }^{5}$ B. Mohr, ${ }^{8}$ R. Moore, ${ }^{16}$ M. Morello, ${ }^{46}$ P. Movilla Fernandez, ${ }^{28}$ J. Mülmenstädt, ${ }^{28}$ A. Mukherjee, ${ }^{16}$ Th. Muller, ${ }^{25}$ R. Mumford, ${ }^{24}$ P. Murat, ${ }^{16}$ J. Nachtman, ${ }^{16}$ J. Naganoma, ${ }^{57}$ S. Nahn, ${ }^{32}$
I. Nakano,,40 A. Napier, ${ }^{56}$ D. Naumov, ${ }^{37}$ V. Necula, ${ }^{17}$ C. Neu, ${ }^{45}$ M. S. Neubauer, ${ }^{9}$ J. Nielsen, ${ }^{28}$ T. Nigmanov, ${ }^{47}$ L. Nodulman, ${ }^{2}$ O. Norniella, ${ }^{3}$ E. Nurse, ${ }^{30}$ T. Ogawa, ${ }^{57}$ S. H. Oh, ${ }^{15}$ Y. D. Oh, ${ }^{27}$ T. Okusawa, ${ }^{41}$ R. Oldeman, ${ }^{29}$ R. Orava, ${ }^{22}$ K. Osterberg, ${ }^{22}$ C. Pagliarone, ${ }^{46}$ E. Palencia, ${ }^{11}$ R. Paoletti, ${ }^{46}$ V. Papadimitriou, ${ }^{16}$ A. A. Paramonov, ${ }^{13}$ B. Parks, ${ }^{39}$ S. Pashapour, ${ }^{33}$ J. Patrick, ${ }^{16}$ G. Pauletta, ${ }^{54}$ M. Paulini, ${ }^{12}$ C. Paus, ${ }^{32}$ D. E. Pellett, ${ }^{7}$ A. Penzo, ${ }^{54}$ T. J. Phillips, ${ }^{15}$ G. Piacentino, ${ }^{46}$ J. Piedra, ${ }^{44}$ L. Pinera, ${ }^{17}$ K. Pitts, ${ }^{23}$ C. Plager, ${ }^{8}$ L. Pondrom, ${ }^{59}$ X. Portell, ${ }^{3}$ O. Poukhov, ${ }^{14}$ N. Pounder, ${ }^{42}$ F. Prakoshyn, ${ }^{14}$ A. Pronko, ${ }^{16}$ J. Proudfoot, ${ }^{2}$ F. Ptohos, ${ }^{18}$ G. Punzi, ${ }^{46}$ J. Pursley, ${ }^{24}$ J. Rademacker, ${ }^{42}$ A. Rahaman, ${ }^{47}$ A. Rakitin, ${ }^{32}$ S. Rappoccio, ${ }^{21}$ F. Ratnikov, ${ }^{52}$ B. Reisert, ${ }^{16}$ V. Rekovic, ${ }^{37}$ N. van Remortel, ${ }^{22}$ P. Renton, ${ }^{42}$ M. Rescigno, ${ }^{51}$ S. Richter, ${ }^{25}$ F. Rimondi, ${ }^{5}$ L. Ristori, ${ }^{46}$ W. J. Robertson, ${ }^{15}$ A. Robson, ${ }^{20}$ T. Rodrigo, ${ }^{11}$ E. Rogers, ${ }^{23}$ S. Rolli, ${ }^{56}$ R. Roser, ${ }^{16}$ M. Rossi, ${ }^{54}$ R. Rossin, ${ }^{17}$ C. Rott, ${ }^{48}$ A. Ruiz, ${ }^{11}$ J. Russ, ${ }^{12}$ V. Rusu, ${ }^{13}$ H. Saarikko, ${ }^{22}$ S. Sabik, ${ }^{33}$ A. Safonov, ${ }^{53}$ W. K. Sakumoto, ${ }^{49}$ G. Salamanna, ${ }^{51}$ O. Saltó, ${ }^{3}$ D. Saltzberg, ${ }^{8}$ C. Sanchez, ${ }^{3}$ L. Santi, ${ }^{54}$ S. Sarkar, ${ }^{51}$ L. Sartori, ${ }^{46}$ K. Sato, ${ }^{55}$ P. Savard, ${ }^{33}$ A. Savoy-Navarro, ${ }^{44}$ T. Scheidle, ${ }^{25}$ P. Schlabach, ${ }^{16}$ E. E. Schmidt, ${ }^{16}$ M. P. Schmidt, ${ }^{60}$ M. Schmitt, ${ }^{38}$ T. Schwarz, ${ }^{34}$ L. Scodellaro, ${ }^{11}$ A. L. Scott, ${ }^{10}$ A. Scribano, ${ }^{46}$ F. Scuri, ${ }^{46}$ A. Sedov, ${ }^{48}$ S. Seidel, ${ }^{37}$ Y. Seiya, ${ }^{41}$ A. Semenov, ${ }^{14}$ L. Sexton-Kennedy, ${ }^{16}$ I. Sfiligoi, ${ }^{18}$ M. D. Shapiro, ${ }^{28}$ T. Shears, ${ }^{29}$ P. F. Shepard, ${ }^{47}$ D. Sherman, ${ }^{21}$ M. Shimojima, ${ }^{55}$ M. Shochet, ${ }^{13}$ Y. Shon, ${ }^{59}$ I. Shreyber, ${ }^{36}$ A. Sidoti, ${ }^{44}$ P. Sinervo, ${ }^{33}$ A. Sisakyan, ${ }^{14}$ J. Sjolin, ${ }^{42}$ A. Skiba, ${ }^{25}$ A. J. Slaughter, ${ }^{16}$ K. Sliwa, ${ }^{56}$ J. R. Smith, ${ }^{7}$ F. D. Snider, ${ }^{16}$ R. Snihur, ${ }^{33}$ M. Soderberg, ${ }^{34}$ A. Soha, ${ }^{7}$ S. Somalwar, ${ }^{52}$ V. Sorin, ${ }^{35}$ J. Spalding, ${ }^{16}$ M. Spezziga, ${ }^{16}$ F. Spinella, ${ }^{46}$ T. Spreitzer, ${ }^{33}$ P. Squillacioti, ${ }^{46}$ M. Stanitzki, ${ }^{60}$ A. Staveris-Polykalas, ${ }^{46}$ R. St. Denis, ${ }^{20}$ B. Stelzer, ${ }^{8}$ O. Stelzer-Chilton, ${ }^{42}$ D. Stentz, ${ }^{38}$ J. Strologas, ${ }^{37}$ D. Stuart, ${ }^{10}$ J. S. Suh, ${ }^{27}$ A. Sukhanov, ${ }^{17}$ K. Sumorok, ${ }^{32}$ H. Sun, ${ }^{56}$ T. Suzuki, ${ }^{55}$ A. Taffard, ${ }^{23}$ R. Takashima, ${ }^{40}$ Y. Takeuchi, ${ }^{55}$ K. Takikawa, ${ }^{55}$ M. Tanaka, ${ }^{2}$ R. Tanaka, ${ }^{40}$ N. Tanimoto, ${ }^{40}$ M. Tecchio, ${ }^{34}$ P. K. Teng, ${ }^{1}$ K. Terashi, ${ }^{50}$ S. Tether, ${ }^{32}$ J. Thom, ${ }^{16}$ A. S. Thompson, ${ }^{20}$ E. Thomson, ${ }^{45}$ P. Tipton, ${ }^{49}$ V. Tiwari, ${ }^{12}$ S. Tkaczyk, ${ }^{16}$ D. Toback, ${ }^{53}$ S. Tokar, ${ }^{14}$ K. Tollefson, ${ }^{35}$ T. Tomura, ${ }^{55}$ D. Tonelli, ${ }^{46}$ M. Tönnesmann, ${ }^{35}$ S. Torre, ${ }^{18}$ D. Torretta, ${ }^{16}$ S. Tourneur, ${ }^{44}$ W. Trischuk, ${ }^{33}$ R. Tsuchiya, ${ }^{57}$ S. Tsuno, ${ }^{40}$ N. Turini, ${ }^{46}$ F. Ukegawa, ${ }^{55}$ T. Unverhau, ${ }^{20}$ S. Uozumi, ${ }^{55}$ D. Usynin, ${ }^{45}$ A. Vaiciulis, ${ }^{49}$ S. Vallecorsa, ${ }^{19}$ A. Varganov, ${ }^{34}$ E. Vataga, ${ }^{37}$ G. Velev, ${ }^{16}$ G. Veramendi, ${ }^{23}$ V. Veszpremi, ${ }^{48}$ R. Vidal, ${ }^{16}$ I. Vila, ${ }^{11}$ R. Vilar, ${ }^{11}$ T. Vine, ${ }^{30}$ I. Vollrath,,${ }^{33}$ I. Volobouev, ${ }^{28}$ G. Volpi, ${ }^{46}$ F. Würthwein, ${ }^{9}$ P. Wagner, ${ }^{53}$ R. G. Wagner, ${ }^{2}$ R. L. Wagner, ${ }^{16}$ W. Wagner, ${ }^{25}$ R. Wallny, ${ }^{8}$ T. Walter, ${ }^{25}$ Z. Wan, ${ }^{52}$ S. M. Wang, ${ }^{1}$ A. Warburton, ${ }^{33}$ S. Waschke, ${ }^{20}$ D. Waters, ${ }^{30}$ W. C. Wester III, ${ }^{16}$ B. Whitehouse, ${ }^{56}$ D. Whiteson, ${ }^{45}$ A. B. Wicklund, ${ }^{2}$ E. Wicklund, ${ }^{16}$ G. Williams, ${ }^{33}$ H. H. Williams, ${ }^{45}$ P. Wilson, ${ }^{16}$ B. L. Winer, ${ }^{39}$ P. Wittich, ${ }^{16}$ S. Wolbers, ${ }^{16}$ C. Wolfe, ${ }^{13}$ T. Wright, ${ }^{34}$ X. Wu, ${ }^{19}$ S. M. Wynne, ${ }^{29}$ A. Yagil, ${ }^{16}$ K. Yamamoto, ${ }^{41}$ J. Yamaoka, ${ }^{52}$ T. Yamashita, ${ }^{40}$ C. Yang, ${ }^{60}$ U. K. Yang, ${ }^{13}$ Y. C. Yang, ${ }^{27}$ W. M. Yao, ${ }^{28}$ G. P. Yeh, ${ }^{16}$ J. Yoh, ${ }^{16}$ K. Yorita, ${ }^{13}$ T. Yoshida, ${ }^{41}$ G. B. Yu, ${ }^{49}$ I. Yu, ${ }^{27}$ S. S. Yu, ${ }^{16}$ J. C. Yun, ${ }^{16}$ L. Zanello, ${ }^{51}$ A. Zanetti, ${ }^{54}$ I. Zaw, ${ }^{21}$ F. Zetti, ${ }^{46}$ X. Zhang, ${ }^{23}$ J. Zhou, ${ }^{52}$ and S. Zucchelli ${ }^{5}$

(CDF Collaboration)

${ }^{1}$ Institute of Physics, Academia Sinica, Taipei, Taiwan 11529, Republic of China
${ }^{2}$ Argonne National Laboratory, Argonne, Illinois 60439, USA
${ }^{3}$ Institut de Fisica d'Altes Energies, Universitat Autonoma de Barcelona, E-08193, Bellaterra (Barcelona), Spain
${ }^{4}$ Baylor University, Waco, Texas 76798, USA
${ }^{5}$ Istituto Nazionale di Fisica Nucleare, University of Bologna, I-40127 Bologna, Italy
${ }^{6}$ Brandeis University, Waltham, Massachusetts 02254, USA
${ }^{7}$ University of California-Davis, Davis, California 95616, USA
${ }^{8}$ University of California-Los Angeles, Los Angeles, California 90024, USA
${ }^{9}$ University of California-San Diego, La Jolla, California 92093, USA
${ }^{10}$ University of California-Santa Barbara, Santa Barbara, California 93106, USA
${ }^{11}$ Instituto de Fisica de Cantabria, CSIC-University of Cantabria, 39005 Santander, Spain
${ }^{12}$ Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
${ }^{13}$ Enrico Fermi Institute, University of Chicago, Chicago, Illinois 60637, USA
${ }^{14}$ Joint Institute for Nuclear Research, RU-141980 Dubna, Russia
${ }^{15}$ Duke University, Durham, North Carolina 27708, USA
${ }^{16}$ Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
${ }^{17}$ University of Florida, Gainesville, Florida 32611, USA
${ }^{18}$ Laboratori Nazionali di Frascati, Istituto Nazionale di Fisica Nucleare, I-00044 Frascati, Italy
${ }^{19}$ University of Geneva, CH-1211 Geneva 4, Switzerland
${ }^{20}$ Glasgow University, Glasgow G12 8QQ, United Kingdom
${ }^{21}$ Harvard University, Cambridge, Massachusetts 02138, USA
${ }^{22}$ Division of High Energy Physics, Department of Physics, University of Helsinki and Helsinki Institute of Physics, FIN-00014, Helsinki, Finland

${ }^{23}$ University of Illinois, Urbana, Illinois 61801, USA
${ }^{24}$ The Johns Hopkins University, Baltimore, Maryland 21218, USA
${ }^{25}$ Institut für Experimentelle Kernphysik, Universität Karlsruhe, 76128 Karlsruhe, Germany
${ }^{26}$ High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305, Japan
${ }^{27}$ Center for High Energy Physics: Kyungpook National University, Taegu 702-701, Korea;
Seoul National University, Seoul 151-742, Korea;
and SungKyunKwan University, Suwon 440-746, Korea
${ }^{28}$ Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
${ }^{29}$ University of Liverpool, Liverpool L69 7ZE, United Kingdom
${ }^{30}$ University College London, London WC1E 6BT, United Kingdom
${ }^{31}$ Centro de Investigaciones Energeticas Medioambientales y Tecnologicas, E- 28040 Madrid, Spain
${ }^{32}$ Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
${ }^{33}$ Institute of Particle Physics: McGill University, Montréal, Canada H3A 2T8; and University of Toronto, Toronto, Canada M5S 1A7
${ }^{34}$ University of Michigan, Ann Arbor, Michigan 48109, USA
${ }^{35}$ Michigan State University, East Lansing, Michigan 48824, USA
${ }^{36}$ Institution for Theoretical and Experimental Physics, ITEP, Moscow 117259, Russia
${ }^{37}$ University of New Mexico, Albuquerque, New Mexico 87131, USA
${ }^{38}$ Northwestern University, Evanston, Illinois 60208, USA
${ }^{39}$ The Ohio State University, Columbus, Ohio 43210, USA
${ }^{40}$ Okayama University, Okayama 700-8530, Japan
${ }^{41}$ Osaka City University, Osaka 588, Japan
${ }^{42}$ University of Oxford, Oxford OX1 3RH, United Kingdom
${ }^{43}$ University of Padova, Istituto Nazionale di Fisica Nucleare, Sezione di Padova-Trento, I-35131 Padova, Italy
${ }^{44}$ LPNHE, Universite Pierre et Marie Curie/IN2P3-CNRS, UMR7585, Paris, F-75252 France
${ }^{45}$ University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
${ }^{46}$ Istituto Nazionale di Fisica Nucleare Pisa, Universities of Pisa, Siena and Scuola Normale Superiore, I-56127 Pisa, Italy
${ }^{47}$ University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
${ }^{48}$ Purdue University, West Lafayette, Indiana 47907, USA
${ }^{49}$ University of Rochester, Rochester, New York 14627, USA
${ }^{50}$ The Rockefeller University, New York, New York 10021, USA
${ }^{51}$ Istituto Nazionale di Fisica Nucleare, Sezione di Roma 1, University of Rome "La Sapienza," I-00185 Roma, Italy
${ }^{52}$ Rutgers University, Piscataway, New Jersey 08855, USA
${ }^{53}$ Texas A\&M University, College Station, Texas 77843, USA
${ }^{54}$ Istituto Nazionale di Fisica Nucleare, University of Trieste/Udine, Italy
${ }^{55}$ University of Tsukuba, Tsukuba, Ibaraki 305, Japan
${ }^{56}$ Tufts University, Medford, Massachusetts 02155, USA
${ }^{57}$ Waseda University, Tokyo 169, Japan
${ }^{58}$ Wayne State University, Detroit, Michigan 48201, USA
${ }^{59}$ University of Wisconsin, Madison, Wisconsin 53706, USA
${ }^{60}$ Yale University, New Haven, Connecticut 06520, USA
(Received 22 May 2006; published 17 July 2006)

Abstract

We present results of a search for anomalous production of events containing a charged lepton (ℓ, either e or μ) and a photon (γ), both with high transverse momentum, accompanied by additional signatures X, including missing transverse energy $\left(\boldsymbol{E}_{T}\right)$ and additional leptons and photons. We use the same selection criteria as in a previous CDF search but with a substantially larger data set, $305 \mathrm{pb}^{-1}$, a $p \bar{p}$ collision energy of 1.96 TeV , and the CDF II detector. We find $42 \ell \gamma \mathscr{E}_{T}$ events versus an expectation of 37.3 ± 5.4 events. We observe $31 \ell \ell \gamma+X$ events versus an expectation of 23.0 ± 2.7 events. We find no events similar to the run I $e e \gamma \gamma \boldsymbol{k}_{T}$ event.

DOI: 10.1103/PhysRevLett.97.031801
PACS numbers: $13.85 . \mathrm{Rm}, 12.60 \mathrm{Jv}, 13.85 . \mathrm{Qk}, 14.80 . \mathrm{Ly}$

In 1995, the CDF experiment, studying $p \bar{p}$ collisions in $86 \mathrm{pb}^{-1}$ of data at a center-of-mass energy of 1.8 TeV at the Fermilab Tevatron, observed [1] an event consistent with the production of two energetic photons, two energetic electrons, and large missing transverse energy \mathbb{E}_{T} [2]. This signature is predicted to be very rare in the standard model (SM) of particle physics [4], with the dominant
contribution being from the production of four gauge bosons: two W bosons and two photons. The event raised theoretical interest, however, as the $\ell \ell \gamma \gamma$ signature is expected in some models of physics "beyond the standard model" such as gauge-mediated models of supersymmetry [5] or the production of a pair of excited electrons [6]. The detection of this event led to the development of
"signature-based" inclusive searches to cast a wider net for new phenomena: in this case, one search for two photons $+X(\gamma \gamma+X)[1]$ and a second for one lepton + one photon $+X(\ell \gamma+X)[7-9]$, where X can be e, μ, γ, or \mathscr{E}_{T}, plus any number of jets.

Neither run I search revealed convincing evidence for new physics. However, in the $\ell \gamma+X$ search, the results were consistent with SM expectations, with "the possible exception of photon-lepton events with large \mathscr{Z}_{T}, for which the observed total was 16 events and the SM expectation was 7.6 ± 0.7 events, corresponding in likelihood to a 2.7 sigma effect." [8]. The run I paper concluded: "However, an excess of events with 0.7% likelihood (equivalent to 2.7 standard deviations for a Gaussian distribution) in one subsample among the five studied is an interesting result, but it is not a compelling observation of new physics. We look forward to more data in the upcoming run of the Fermilab Tevatron." [8]. In this Letter, we report the results of repeating the $\ell \gamma+X$ search with the same kinematic selection criteria in a substantially larger data set $305 \pm 18 \mathrm{pb}^{-1}$, a higher $p \bar{p}$ collision energy 1.96 TeV , and the CDF II detector [10].

The CDF I detector is a cylindrically symmetric spectrometer designed to study $p \bar{p}$ collisions at the Fermilab Tevatron based on the same solenoidal magnet and central calorimeters as the CDF I detector [11] from which it was upgraded. Because the analysis described here is intended to repeat the run I search as closely as possible, we note especially the differences from the CDF I detector relevant to the detection of leptons, photons, and \mathscr{E}_{T}. The tracking systems used to measure the momenta of charged particles have been replaced with a central outer tracker (COT), with smaller drift cells [12], and an enhanced system of silicon strip detectors [13]. The calorimeters in the regions [3] with pseudorapidity $|\eta|>1$ have been replaced with a more compact scintillator-based design, retaining the projective geometry [14]. The coverage in φ of the CMP and CMX muon systems [15] has been extended; the CMU system is unchanged [10].

A 3-level trigger [10] system selects events with a high transverse momentum (p_{T}) [2] lepton ($p_{T}>18 \mathrm{GeV}$) or photon ($E_{T}>25 \mathrm{GeV}$) in the central region $|\eta| \lesssim 1.0$. The trigger system selects photon and electron candidates from clusters of energy in the central electromagnetic calorimeter. Electrons are distinguished from photons by requiring a COT track pointing at the cluster. The muon trigger requires a COT track that extrapolates to a track segment ("stub") in the muon chambers.

Inclusive $\ell \gamma$ events are selected by requiring a central γ candidate with $E_{T}^{\gamma}>25 \mathrm{GeV}$ and a central e or μ with $E_{T}^{\ell}>25 \mathrm{GeV}$ originating less than 60 cm along the beam, line from the detector center and passing the "tight" criteria listed below.

The identification of leptons and photons is essentially the same as in the run I search [7]. A muon candidate
passing the tight cuts must have (a) a well-measured track in the COT; (b) energy deposited in the calorimeter consistent with expectations; (c) a muon stub in both the CMU and CMP, or in the CMX, consistent with the extrapolated COT track; and (d) COT timing consistent with a track from a $p \bar{p}$ collision. An electron candidate passing the tight selection must have (a) a high-quality track with $p_{T}>$ $0.5 E_{T}$, unless $E_{T}>100 \mathrm{GeV}$, in which case the p_{T} threshold is set to 25 GeV ; (b) a good transverse shower profile that matches the extrapolated track position; (c) a lateral sharing of energy in the two calorimeter towers containing the electron shower consistent with that expected; and (d) minimal leakage into the hadron calorimeter [16].

Photon candidates are required to have no track with $p_{T}>1 \mathrm{GeV}$ and at most one track with $p_{T}<1 \mathrm{GeV}$, pointing at the calorimeter cluster, good profiles in both transverse dimensions at shower maximum, and minimal leakage into the hadron calorimeter [16].

To reduce background from photons or leptons from the decays of hadrons produced in jets, both the photon and the lepton in each event are required to be "isolated." The E_{T} deposited in the calorimeter towers in a cone in $\eta-\varphi$ space [3] of radius $R=0.4$ around the photon or lepton position is summed, and the E_{T} due to the photon or lepton is subtracted. The remaining E_{T} is required to be less than $2.0 \mathrm{GeV}+0.02 \times\left(E_{T}-20 \mathrm{GeV}\right)$ for a photon or less than 10% of the E_{T} for electrons or p_{T} for muons. In addition, for photons the sum of the p_{T} of all tracks in the cone must be less than $2.0 \mathrm{GeV}+0.005 \times E_{T}$.

Missing transverse energy \not_{T} is calculated from the calorimeter tower energies in the region $|\eta|<3.6$. Corrections are then made to the \mathscr{E}_{T} for nonuniform calorimeter response [17] for jets with uncorrected $E_{T}>$ 15 GeV and $\eta<2.0$ and for muons with $p_{T}>20 \mathrm{GeV}$.
A total of 574 events, 508 inclusive $e \gamma$ and 66 inclusive $\mu \gamma$ candidates, pass the $\ell \gamma$ selection criteria. Of the 508 inclusive $e \gamma$ events, 397 have the electron and photon within 30° of back to back in $\varphi, \mathbb{C}_{T}<25 \mathrm{GeV}$, and no additional leptons or photons. These are dominated by $Z^{0} \rightarrow e^{+} e^{-}$ decays, in which one of the electrons radiates a high- E_{T} photon while traversing the material inside the COT active volume, leading to the observation of an electron and a photon approximately back to back in φ, with an $e \gamma$ invariant mass close to the Z^{0} mass.

We use $W^{ \pm}$and Z^{0} production as control samples to ensure that the efficiencies for high- p_{T} electrons and muons, as well as for \mathscr{E}_{T}, are well understood. The photon control sample is constructed from events in which one of the electrons radiates a high- $E_{T} \gamma$ such that the $e \gamma$ invariant mass is within 10 GeV of the Z^{0} mass.

The first search we perform is in the $\ell \gamma \mathscr{\not}_{T}+X$ subsample, defined by requiring that an event contain $\mathscr{E}_{T}>$ 25 GeV in addition to the γ and tight lepton. Of the $574 \ell \gamma$ events, $25 \mathrm{e} \gamma \boldsymbol{t}_{T}$ events and $17 \mu \gamma \boldsymbol{\not}_{T}$ events pass the \mathscr{Z}_{T} requirement. Figure 1 shows the observed distributions in

FIG. 1. The distributions for events in the $\ell \gamma \boldsymbol{L}_{T}$ sample (points) in (a) the \mathscr{E}_{T} of the photon; (b) the E_{T} of the lepton; (c) the missing transverse energy \boldsymbol{E}_{T}; and (d) the transverse mass of the $\ell \gamma \mathscr{C}_{T}$ system. The histograms show the expected SM contributions, including estimated backgrounds from misidentified photons and leptons.

1(a) the E_{T} of the photon; 1(b) the E_{T} of the lepton; 1(c) \mathscr{E}_{T}; and 1(d) the transverse mass of the $\ell \gamma \mathbb{E}_{T}$ system, where $M_{T}=\left[\left(E_{T}^{\ell}+E_{T}^{\gamma}+\mathbb{E}_{T}\right)^{2}-\left(\vec{E}_{T}^{\ell}+\vec{E}_{T}^{\gamma}+\vec{E}_{T}\right)^{2}\right]^{1 / 2}$.

A second search, for the $\ell \ell \gamma+X$ signature, is constructed by requiring another e or μ in addition to the tight lepton and the γ. The additional muons are required to have $p_{T}>20 \mathrm{GeV}$ and to satisfy the same criteria as for tight muons but with fewer hits required on the track, or, alternatively, a more stringent cut on track quality but no requirement that there be a matching stub in the muon systems. Additional central electrons are required to have

FIG. 2. The distributions for events in the $\ell \ell \gamma$ sample (points) in (a) the E_{T} of the photon; (b) the E_{T} of the leptons (two entries per event); (c) the 2-body mass of the dilepton system; and (d) the 3-body mass $m_{\ell \ell \gamma}$. The histograms show the expected SM contributions.
$E_{T}>20 \mathrm{GeV}$ and to satisfy the tight central electron criteria but with a track requirement of only $p_{T}>10 \mathrm{GeV}$ (rather than $0.5 \times E_{T}$) and no requirement on a shower maximum measurement or lateral energy sharing between calorimeter towers. Electrons in the end-plug calorimeters $(1.2<|\eta|<2.0)$ are required to have $E_{T}>15 \mathrm{GeV}$, minimal leakage into the hadron calorimeter, a "track" containing at least 3 hits in the silicon tracking system, and a shower transverse shape consistent with that expected, with a centroid close to the extrapolated position of the track [18].

The $\ell \ell \gamma$ search criteria select 31 events (19 ee γ and $12 \mu \mu \gamma$) of the $574 \ell \gamma$ events. No $e \mu \gamma$ events are observed. Figure 2 shows the observed distributions in 2(a) the E_{T} of the photon; 2(b) the E_{T} of the leptons; 2(c) the 2-body mass of the dilepton system; and 2(d) the 3-body mass $m_{\ell \ell \gamma}$.

We do not expect SM events with large \mathbb{E}_{T} in the $\ell \ell \gamma$ sample; the run I ee $\gamma \gamma \psi_{T}$ event was of special interest in the context of supersymmetry [5] due to the large value of $\mathbb{E}_{T}(55 \pm 7 \mathrm{GeV})$. Figure 3 shows the distributions in \mathbb{E}_{T} for the $\mu \mu \gamma$ and ee γ subsamples of the $\ell \ell \gamma$ sample. No events are observed with $\mathscr{E}_{T}>25 \mathrm{GeV}$.

The dominant SM source of $\ell \gamma$ events is electroweak W and Z^{0} / γ^{*} production along with a γ radiated from one of the charged particles involved in the process [19]. The number of such events is estimated using leading-order event generators [20-22]. Initial state radiation is simulated by the PYTHIA shower Monte Carlo (MC) code [23] tuned to reproduce the underlying event. The generated particles are then passed through a full detector simulation, and these events are then reconstructed with the same code used for the data.

The expected contributions from $W \gamma$ and $Z^{0} / \gamma^{*}+\gamma$ production to the $\ell \gamma \mathbb{E}_{T}$ and $\ell \ell \gamma$ searches are given in Table I. A correction for higher-order processes (K factor) has been applied [24]. In the $\ell \gamma \mathbb{E}_{T}$ signature, we expect 22.5 ± 2.8 events from $W \gamma$ and 5.7 ± 1.0 from $Z^{0} / \gamma^{*}+$ γ. In the $\ell \ell \gamma$ signature, we expect 20.3 ± 2.4 events from $Z^{0} / \gamma^{*}+\gamma$; the contribution from $W \gamma$ is negligible. The uncertainties on the SM contributions include those from parton distribution functions (5\%), factorization scale

FIG. 3. The distributions in missing transverse energy \mathscr{E}_{T} observed in the inclusive search for (a) $\mu \mu \gamma$ events and (b) ee γ events. The histograms show the expected SM contributions.

TABLE I．A comparison of the numbers of events predicted by the SM and the observations for the $\ell \gamma \|_{T}$ and $\ell \ell \gamma$ searches．The SM predictions are dominated by $W \gamma$ and $Z^{0} \gamma$ production，respectively［20－22］．Other contributions come from $W \gamma \gamma$ and $Z^{0} \gamma \gamma$ ，leptonic τ decays，and misidentified leptons，photons，or \mathscr{E}_{T} ．

SM source	$\begin{aligned} & \text { Lepton }+ \text { photon }+\not \mathbb{Z}_{T} \text { events } \\ & e \gamma \boldsymbol{E}_{T} \end{aligned}$	$\mu \gamma \mathscr{C}_{T}$	$(e+\mu) \gamma \underline{C l}_{T}$
$W^{ \pm} \gamma$	13.70 ± 1.89	8.84 ± 1.35	22.54 ± 2.80
$Z^{0} / \gamma^{*}+\gamma$	1.16 ± 0.40	4.49 ± 0.64	5.65 ± 1.03
$W^{ \pm} \gamma \gamma, Z^{0} / \gamma^{*}+\gamma \gamma$	0.14 ± 0.02	0.18 ± 0.02	0.32 ± 0.03
$W^{ \pm} \gamma, Z^{0} / \gamma^{*}+\gamma \rightarrow \tau \gamma$	0.71 ± 0.18	0.26 ± 0.08	0.97 ± 0.22
$W^{ \pm}+$jet faking γ	2.8 ± 2.8	1.6 ± 1.6	4.4 ± 4.4
$Z^{0} / \gamma^{*} \rightarrow e^{+} e^{-}, e \rightarrow \gamma$	2.45 ± 0.33	．．．	2.45 ± 0.33
Jets faking $\ell+\mathbb{E}_{T}$	0.7 ± 0.7	0.3 ± 0.3	1.0 ± 0.8
Total	21.7 ± 3.4	15.7 ± 2.2	37.3 ± 5.4
Observed	25	17	42
SM source	$\begin{aligned} & \text { Multilepton }+ \text { photon events } \\ & \text { eer } \end{aligned}$	$\mu \mu \gamma$	$l l \gamma$
$Z^{0} / \gamma^{*}+\gamma$	12.50 ± 1.53	7.81 ± 0.88	20.31 ± 2.40
$Z^{0} / \gamma^{*}+\gamma \gamma$	0.24 ± 0.03	0.12 ± 0.02	0.36 ± 0.04
$Z^{0} / \gamma^{*}+$ jet faking γ	0.3 ± 0.3	0.2 ± 0.2	0.5 ± 0.5
$Z^{0} / \gamma^{*} \rightarrow e^{+} e^{-}, e \rightarrow \gamma$	0.23 ± 0.09	．．	0.23 ± 0.09
Jets faking $\ell+⿻ 口 卄_{T}$	0.6 ± 0.6	1.0 ± 1.0	1.6 ± 1.2
Total	13.9 ± 1.7	9.1 ± 1.4	23.0 ± 2.7
Observed	19	12	31

（2\％），and K factor（3\％），a comparison of different MC generators（ $\sim 5 \%$ ），and the luminosity（ 6% ）．

High p_{T} photons are copiously created from hadron decays in jets initiated by a scattered quark or gluon．In particular，mesons such as the π^{0} or η decay to photons which may satisfy the photon selection criteria．The num－ bers of lepton－plus－misidentified－jet events expected in the $\ell \gamma \mathscr{E}_{T}$ and $\ell \ell \gamma$ samples are determined by measuring the jet E_{T} spectrum in $\ell E_{T}+$ jet and $\ell \ell+$ jet samples，respec－ tively，and then multiplying by the probability of a jet being misidentified as a photon，$P_{\gamma}^{\mathrm{jet}}\left(E_{T}\right)$ ，which is measured in data samples triggered on jets．The misidentification rate is $P_{\gamma}^{\mathrm{jet}}=(6.5 \pm 3.3) \times 10^{-4}$ for $E_{T}^{\gamma}=25 \mathrm{GeV}$ and $(4.0 \pm$ 4．0）$\times 10^{-4}$ for $E_{T}^{\gamma}=50 \mathrm{GeV}$［19］．The predicted number of events with jets misidentified as photons is 4.4 ± 4.4 for the $\ell \gamma \mathscr{E}_{T}$ signature and 0.5 ± 0.5 for $\ell \ell \gamma$ ．

The probability that an electron undergoes hard brems－ strahlung and is misidentified as a photon，P_{γ}^{e} ，is measured from the photon control sample．The number of misidenti－ fied $e \gamma$ events divided by twice the number of $e e$ events gives $P_{\gamma}^{e}=(1.7 \pm 0.1) \%$ ．Applying this misidentification rate to electrons in the inclusive lepton samples，we find 2.5 ± 0.3 and 0.2 ± 0.1 events pass the selection criteria for the $\ell \gamma \|_{T}$ and $\ell \ell \gamma$ searches，respectively．

We have estimated the background due to events with jets misidentified as $\ell \gamma \ell_{T}$ or $\ell \ell \gamma$ signatures by studying the total p_{T} of tracks in a cone in $\eta-\varphi$ space of radius $R=0.4$ around the lepton track．We estimate there are
1.0 ± 0.8 and 1.6 ± 1.2 events in the $\ell \gamma \not \mathbb{E}_{T}$ and $\ell \ell \gamma$ sig－ natures，respectively．

We have used both MADGRAPH［20］and COMPHEP［22］ to simulate the triboson channels $W \gamma \gamma$ and $Z \gamma \gamma$ ．The expected contributions are small： 0.32 ± 0.03 and 0.36 ± 0.04 events in the $\ell \gamma \not \mathscr{C}_{T}$ and $\ell \ell \gamma$ signatures， respectively．

Muon backgrounds from hadrons either decaying in flight or penetrating the iron before the muon chambers， and from the decay of bottom and charm quarks，are found to be negligible．

The predicted and observed totals for both the $\ell \gamma \boldsymbol{E}_{T}$ and $\ell \ell \gamma$ searches are shown in Table I．We observe $42 \ell \gamma \not \mathscr{E}_{T}$ events，versus the expectation of 37.3 ± 5.4 events．In the $\ell \ell \gamma$ channel，we observe 31 events，versus an expectation of 23.0 ± 2.7 events．There is no significant excess in either signature．The predicted and observed kinematic distributions are compared in Fig． 1 for the $\ell \gamma \mathbb{E}_{T}$ signature and in Figs． 2 and 3 for the $\ell \ell \gamma$ search．

In conclusion，we have repeated the search for inclusive lepton + photon production with the same kinematic re－ quirements as the run I search，but with a significantly larger data sample and a higher collision energy．We find that the numbers of events in the $\ell \gamma \mathscr{E}_{T}$ and $\ell \ell \gamma$ subsam－ ples of the $\ell \gamma+X$ sample agree with SM predictions．We observe no $\ell \ell \gamma$ events with anomalous large \mathbb{E}_{T} or with multiple photons and so find no events such as the ee $\gamma \gamma \mathscr{E}_{T}$ event of run I．

We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. Uli Baur, Alexander Belyaev, Edward Boos, Lev Dudko, Tim Stelzer, and Steve Mrenna were extraordinarily helpful with the SM predictions. This work was supported by the U.S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Foundation; the A. P. Sloan Foundation; the Bundesministerium für Bildung und Forschung, Germany; the Korean Science and Engineering Foundation and the Korean Research Foundation; the Particle Physics and Astronomy Research Council and the Royal Society, United Kingdom; the Russian Foundation for Basic Research; the Comisión Interministerial de Ciencia y Tecnología, Spain; in part by the European Community's Human Potential Programme under Contract No. HPRN-CT-2002-00292; and the Academy of Finland.
[1] F. Abe et al. (CDF Collaboration), Phys. Rev. D 59, 092002 (1999); Phys. Rev. Lett. 81, 1791 (1998); D. Toback, Ph.D. thesis, University of Chicago, 1997.
[2] Transverse momentum and energy are defined as $p_{T}=$ $p \sin \theta$ and $E_{T}=E \sin \theta$, respectively. Missing $E_{T}\left(\vec{女}_{T}\right)$ is defined by $\vec{E}_{T}=-\sum_{i} E_{T}^{i} \hat{n}_{i}$, where i is the calorimeter tower number for $|\eta|<3.6$ (see Ref. [3]), and \hat{n}_{i} is a unit vector perpendicular to the beam axis and pointing at the i th tower. We correct $\overrightarrow{\mathscr{E}}_{T}$ for jets and muons. We define the magnitude $\mathscr{E}_{T}=\left|\vec{E}_{T}\right|$. We use the convention that "momentum" refers to $p c$ and "mass" to $m c^{2}$.
[3] The CDF coordinate system of r, φ, and z is cylindrical, with the z axis along the proton beam. The pseudorapidity is $\eta=-\ln (\tan (\theta / 2))$.
[4] S. L. Glashow, Nucl. Phys. 22, 579 (1961); S. Weinberg, Phys. Rev. Lett. 19, 1264 (1967); A. Salam, in Proceedings of the 8th Nobel Symposium, Stockholm, 1968, edited by N. Svartholm (Almsvist and Wiksells, Stockholm, 1968), p. 367.
[5] S. Ambrosanio, G. L. Kane, G. D. Kribs, S. P. Martin, and S. Mrenna, Phys. Rev. D 55, 1372 (1997); B. C. Allanach, S. Lola, and K. Sridhar, Phys. Rev. Lett. 89, 011801 (2002).
[6] D. Acosta et al. (CDF Collaboration), Phys. Rev. Lett. 94, 101802 (2005).
[7] D. Acosta et al. (CDF Collaboration), Phys. Rev. D 66, 012004 (2002).
[8] D. Acosta et al. (CDF Collaboration), Phys. Rev. Lett. 89, 041802 (2002).
[9] J. Berryhill, Ph.D. thesis, University of Chicago, 2000.
[10] D. Acosta et al. (CDF Collaboration), Phys. Rev. D 71, 032001 (2005).
[11] F. Abe et al. (CDF Collaboration), Nucl. Instrum. Methods Phys. Res., Sect. A 271, 387 (1988).
[12] A. Affolder et al., Nucl. Instrum. Methods Phys. Res., Sect. A 526, 249 (2004).
[13] A. Sill et al., Nucl. Instrum. Methods Phys. Res., Sect. A 447, 1 (2000); A. Affolder et al., Nucl. Instrum. Methods Phys. Res., Sect. A 453, 84 (2000); C. S. Hill, Nucl. Instrum. Methods Phys. Res., Sect. A 530, 1 (2004).
[14] S. Kuhlmann et al., Nucl. Instrum. Methods Phys. Res., Sect. A 518, 39 (2004).
[15] The CMU system consists of gas proportional chambers in the region $|\eta|<0.6$; the CMP system consists of chambers after an additional meter of steel, also for $|\eta|<0.6$. The CMX chambers cover $0.6<|\eta|<1.0$.
[16] The fraction of electromagnetic energy allowed to leak into the hadron compartment $E_{\text {had }} / E_{\text {em }}$ must be less than $0.055+0.00045 \times E_{\text {em }}(\mathrm{GeV})$ for central electrons, less than 0.05 for electrons in the end-plug calorimeters, and less than $\max \left[0.125,0.055+0.00045 \times E_{\text {em }}(\mathrm{GeV})\right]$ for photons.
[17] A. Bhatti et al., hep-ex/0510047.
[18] D. Acosta et al. (CDF Collaboration), Phys. Rev. D 71, 051104 (2005).
[19] D. Acosta et al. (CDF Collaboration), Phys. Rev. Lett. 94, 041803 (2005).
[20] T. Stelzer and W.F. Long, Comput. Phys. Commun. 81, 357 (1994); F. Maltoni and T. Stelzer, J. High Energy Phys. 02 (2003) 27.
[21] U. Baur, T. Han, and J. Ohnemus, Phys. Rev. D 48, 5140 (1993); J. Ohnemus, Phys. Rev. D 47, 940 (1993).
[22] E. Boos et al. (CompHEP Collaboration), Nucl. Instrum. Methods Phys. Res., Sect. A 534, 250 (2004).
[23] T. Sjostrand, Comput. Phys. Commun. 82, 74 (1994); S. Mrenna, Comput. Phys. Commun. 101, 232 (1997).
[24] U. Baur, T. Han, and J. Ohnemus, Phys. Rev. D 48, 5140 (1993); 57, 2823 (1998). Both the $W \gamma$ and $Z \gamma K$ factors are fixed at 1.36 for generated $\ell \nu$ masses below 76 GeV and for generated $\ell^{+} \ell^{-}$masses below 86 GeV . Above the poles, the K factors grow with E_{T}^{γ} to be 1.62 and 1.53 at $E_{T}^{\gamma}=100 \mathrm{GeV}$ for $W \gamma$ and $Z \gamma$, respectively.

