9,778 research outputs found

    Cosmology with Varying Constants

    Full text link
    The idea of possible time or space variations of the `fundamental' constants of nature, although not new, is only now beginning to be actively considered by large numbers of researchers in the particle physics, cosmology and astrophysics communities. This revival is mostly due to the claims of possible detection of such variations, in various different contexts and by several groups. Here, I present the current theoretical motivations and expectations for such variations, review the current observational status, and discuss the impact of a possible confirmation of these results in our views of cosmology and physics as a whole.Comment: 14 pages, no figures. Essay to appear in Phil. Trans. Roy. Soc. Lond. A Triennial Series (Christmas 2002 Issue

    Patterns and recent trends in mastectomy and breast conserving surgery for women with early-stage breast tumors in Missouri : an update and further investigation

    Get PDF
    Rev 09, 2018-06-28)Presented at the 2018 NAACCR conference in Pittsburgh, PA in June 2018.Schmaltz CL, Jackson-Thompson J, Du J, Francis B. Patterns and recent trends in mastectomy and breast conserving surgery for women with early-stage breast tumors in Missouri: An update and further investigation. 2018 Annual Conference of the North American Association of Central Cancer Registries, Pittsburgh, PA. June, 2018.1. Background: Most females age 18–64 diagnosed with an early-stage breast tumor in Missouri, 2008–2015, were surgically treated with either total (simple) mastectomy (TM), modified radical mastectomy (MRM), or breast conserving surgery (BCS). Last year, the Missouri Cancer Registry examined demographic differences between females receiving these treatments and noted a slight decrease in the % of cases getting BCS since 2008 with an increase in TM (& TM+MRM). 2. Purpose: To continue monitoring trends in the surgical treatment of early-stage breast cancer in Missouri and describe the patterns by demographics & tumor characteristics

    SU-8 Guiding Layer for Love Wave Devices

    Get PDF
    SU-8 is a technologically important photoresist used extensively for the fabrication of microfluidics and MEMS, allowing high aspect ratio structures to be produced. In this work we report the use of SU-8 as a Love wave sensor guiding layer which allows the possibility of integrating a guiding layer with flow cell during fabrication. Devices were fabricated on ST-cut quartz substrates with a single-single finger design such that a surface skimming bulk wave (SSBW) at 97.4 MHz was excited. SU-8 polymer layers were successively built up by spin coating and spectra recorded at each stage; showing a frequency decrease with increasing guiding layer thickness. The insertion loss and frequency dependence as a function of guiding layer thickness was investigated over the first Love wave mode. Mass loading sensitivity of the resultant Love wave devices was investigated by deposition of multiple gold layers. Liquid sensing using these devices was also demonstrated; water-glycerol mixtures were used to demonstrate sensing of density-viscosity and the physical adsorption and removal of protein was also assessed using albumin and fibrinogen as model proteins

    Probe optimization for quantum metrology via closed-loop learning control

    Full text link
    Experimentally achieving the precision that standard quantum metrology schemes promise is always challenging. Recently, additional controls were applied to design feasible quantum metrology schemes. However, these approaches generally does not consider ease of implementation, raising technological barriers impeding its realization. In this paper, we circumvent this problem by applying closed-loop learning control to propose a practical controlled sequential scheme for quantum metrology. Purity loss of the probe state, which relates to quantum Fisher information, is measured efficiently as the fitness to guide the learning loop. We confirm its feasibility and certain superiorities over standard quantum metrology schemes by numerical analysis and proof-of-principle experiments in a nuclear magnetic resonance (NMR) system

    Southern Ocean Seasonal Restratification Delayed by Submesoscale Wind–Front Interactions

    Get PDF
    Ocean stratification and the vertical extent of the mixed layer influence the rate at which the ocean and atmosphere exchange properties. This process has direct impacts for anthropogenic heat and carbon uptake in the Southern Ocean. Submesoscale instabilities that evolve over space (1–10 km) and time (from hours to days) scales directly influence mixed layer variability and are ubiquitous in the Southern Ocean. Mixed layer eddies contribute to mixed layer restratification, while down-front winds, enhanced by strong synoptic storms, can erode stratification by a cross-frontal Ekman buoyancy flux. This study investigates the role of these submesoscale processes on the subseasonal and interannual variability of the mixed layer stratification using four years of high-resolution glider data in the Southern Ocean. An increase of stratification from winter to summer occurs due to a seasonal warming of the mixed layer. However, we observe transient decreases in stratification lasting from days to weeks, which can arrest the seasonal restratification by up to two months after surface heat flux becomes positive. This leads to interannual differences in the timing of seasonal restratification by up to 36 days. Parameterizing the Ekman buoyancy flux in a one-dimensional mixed layer model reduces the magnitude of stratification compared to when the model is run using heat and freshwater fluxes alone. Importantly, the reduced stratification occurs during the spring restratification period, thereby holding important implications for mixed layer dynamics in climate models as well as physical–biological coupling in the Southern Ocean

    Stirring of Sea‐Ice Meltwater Enhances Submesoscale Fronts in the Southern Ocean

    Get PDF
    In the sea‐ice‐impacted Southern Ocean, the spring sea‐ice melt and its impact on physical processes set the rate of surface water mass modification. These modified waters will eventually subduct near the polar front and enter the global overturning circulation. Submesoscale processes modulate the stratification of the mixed layer (ML) and ML properties. Sparse observations in polar regions mean that the role of submesoscale motions in the exchange of properties across the base of the ML is not well understood. The goal of this study is to determine the interplay between sea‐ice melt, surface boundary layer forcing, and submesoscale flows in setting properties of the surface ML in the Antarctic marginal ice zone. High‐resolution observations suggest that fine‐scale lateral fronts arise from either/both mesoscale and submesoscale stirring of sea‐ice meltwater anomalies. The strong salinity‐driven stratification at the base of the ML confines these fronts to the upper ocean, limiting submesoscale vertical fluxes across the ML base. This strong stratification prevents the local subduction of modified waters by submesoscale flows, suggesting that the subduction site that links to the global overturning circulation does not correspond with the location of sea‐ice melt. However, surface‐enhanced fronts increase the potential for Ekman‐driven cross‐frontal flow to modulate the stability of the ML and ML properties. The parameterization of submesoscale processes in coupled‐climate models, particularly those contributing to the Ekman buoyancy flux, may improve the representation of ML heat and freshwater transport in the ice‐impacted Southern Ocean during summer

    Stirring of sea ice meltwater enhances submesoscale fronts in the Southern Ocean

    Get PDF
    In the sea ice-impacted Southern Ocean, the spring melt of sea ice modifies the upper ocean. These modified waters subduct and enter the global overturning circulation. Submesoscale processes act to modulate the stratification of the mixed layer and therefore mixed layer properties. Sparse observations mean that the role of submesoscales in exchange across the base of the mixed layer in this region is not well constrained. The goal of this study is to determine the interplay between sea ice melt, surface boundary layer forcing, and submesoscale flows in regulating the mixed layer structure in the Antarctic Marginal Ice Zone. High-resolution observations suggest that fine-scale lateral fronts, representative of submesoscale mixed layer eddies (MLEs), arise from mesoscale gradients produced by northwards advecting sea ice meltwater. The strong salinity-driven stratification at the base of the mixed layer confined the MLEs to the upper ocean, limiting submesoscale vertical fluxes across the mixed layer base. This strong stratification prevents the local subduction by submesoscale flow of these modified waters, suggesting that the subduction site that links to the global overturning circulation does not correspond with the location of sea ice melt. However, the presence of MLEs enhanced the magnitude of lateral gradients through stirring and increased the potential for Ekman-driven cross-frontal flow to modulate the stability of the mixed layer and mixed layer properties. The inclusion, particularly of submesoscale Ekman Buoyancy Flux parameterizations, in coupled-climate models, may improve the representation of mixed layer heat and freshwater transport in the ice-impacted Southern Ocean during summer

    Mind the gap: National and local partnership in the Irish public sector

    Get PDF
    This article uses case study data from a major Irish city council to investigate and explain public sector worker attitudes towards social partnership at local and national level. It is argued that the more sceptical attitudes to workplace partnership reflect structural differences between local and national arrangements, which have enabled public sector employers to use ‘social partnership’ as a constraint in the implementation process of a pre-determined public sector reform agenda

    Two-state folding over a weak free-energy barrier

    Get PDF
    We present a Monte Carlo study of a model protein with 54 amino acids that folds directly to its native three-helix-bundle state without forming any well-defined intermediate state. The free-energy barrier separating the native and unfolded states of this protein is found to be weak, even at the folding temperature. Nevertheless, we find that melting curves to a good approximation can be described in terms of a simple two-state system, and that the relaxation behavior is close to single exponential. The motion along individual reaction coordinates is roughly diffusive on timescales beyond the reconfiguration time for an individual helix. A simple estimate based on diffusion in a square-well potential predicts the relaxation time within a factor of two.Comment: 22 pages, 5 figure
    • 

    corecore