1,218 research outputs found
Binary orbits as the driver of γ-ray emission and mass ejection in classical novae
Classical novae are the most common astrophysical thermonuclear explosions, occurring on the surfaces of white dwarf stars accreting gas from companions in binary star systems. Novae typically expel �10,000 solar masses of material at velocities exceeding 1,000 km/s. However, the mechanism of mass ejection in novae is poorly understood, and could be dominated by the impulsive flash of the thermonuclear runaway, prolonged optically thick winds, or binary interaction with the nova envelope. Classical novae are now routinely detected in GeV gamma-rays, suggesting that relativistic particles are accelerated by strong shocks in nova ejecta. Here we present high-resolution imaging of the gamma-ray-emitting nova V959 Mon at radio wavelengths, showing that its ejecta were shaped by binary motion: some gas was expelled rapidly along the poles as a wind from the white dwarf, while denser material drifted out along the equatorial plane, propelled by orbital motion. At the interface between the equatorial and polar regions, we observe synchrotron emission indicative of shocks and relativistic particle acceleration, thereby pinpointing the location of gamma-ray production. Binary shaping of the nova ejecta and associated internal shocks are expected to be widespread among novae, explaining why many novae are gamma-ray emitters
Epidermal growth factor receptor expression analysis in chemotherapy-naive patients with advanced non-small-cell lung cancer treated with gefitinib or placebo in combination with platinum-based chemotherapy
Nitrogen and sulphur management: challenges for organic sources in temperate agricultural systems
A current global trend towards intensification or specialization of agricultural enterprises has been accompanied by increasing public awareness of associated environmental consequences. Air and water pollution from losses of nutrients, such as nitrogen (N) and sulphur (S), are a major concern. Governments have initiated extensive regulatory frameworks, including various land use policies, in an attempt to control or reduce the losses. This paper presents an overview of critical input and loss processes affecting N and S for temperate climates, and provides some background to the discussion in subsequent papers evaluating specific farming systems. Management effects on potential gaseous and leaching losses, the lack of synchrony between supply of nutrients and plant demand, and options for optimizing the efficiency of N and S use are reviewed. Integration of inorganic and organic fertilizer inputs and the equitable re-distribution of nutrients from manure are discussed. The paper concludes by highlighting a need for innovative research that is also targeted to practical approaches for reducing N and S losses, and improving the overall synchrony between supply and demand
A Measurement of Rb using a Double Tagging Method
The fraction of Z to bbbar events in hadronic Z decays has been measured by
the OPAL experiment using the data collected at LEP between 1992 and 1995. The
Z to bbbar decays were tagged using displaced secondary vertices, and high
momentum electrons and muons. Systematic uncertainties were reduced by
measuring the b-tagging efficiency using a double tagging technique. Efficiency
correlations between opposite hemispheres of an event are small, and are well
understood through comparisons between real and simulated data samples. A value
of Rb = 0.2178 +- 0.0011 +- 0.0013 was obtained, where the first error is
statistical and the second systematic. The uncertainty on Rc, the fraction of Z
to ccbar events in hadronic Z decays, is not included in the errors. The
dependence on Rc is Delta(Rb)/Rb = -0.056*Delta(Rc)/Rc where Delta(Rc) is the
deviation of Rc from the value 0.172 predicted by the Standard Model. The
result for Rb agrees with the value of 0.2155 +- 0.0003 predicted by the
Standard Model.Comment: 42 pages, LaTeX, 14 eps figures included, submitted to European
  Physical Journal 
Circumstellar disks and planets. Science cases for next-generation optical/infrared long-baseline interferometers
We present a review of the interplay between the evolution of circumstellar
disks and the formation of planets, both from the perspective of theoretical
models and dedicated observations. Based on this, we identify and discuss
fundamental questions concerning the formation and evolution of circumstellar
disks and planets which can be addressed in the near future with optical and
infrared long-baseline interferometers. Furthermore, the importance of
complementary observations with long-baseline (sub)millimeter interferometers
and high-sensitivity infrared observatories is outlined.Comment: 83 pages; Accepted for publication in "Astronomy and Astrophysics
  Review"; The final publication is available at http://www.springerlink.co
Measurement of the B+ and B-0 lifetimes and search for CP(T) violation using reconstructed secondary vertices
The lifetimes of the B+ and B-0 mesons, and their ratio, have been measured in the OPAL experiment using 2.4 million hadronic Z(0) decays recorded at LEP. Z(0) --> b (b) over bar decays were tagged using displaced secondary vertices and high momentum electrons and muons. The lifetimes were then measured using well-reconstructed charged and neutral secondary vertices selected in this tagged data sample. The results aretau(B+) = 1.643 +/- 0.037 +/- 0.025 pstau(Bo) = 1.523 +/- 0.057 +/- 0.053 pstau(B+)/tau(Bo) = 1.079 +/- 0.064 +/- 0.041,where in each case the first error is statistical and the second systematic.A larger data sample of 3.1 million hadronic Z(o) decays has been used to search for CP and CPT violating effects by comparison of inclusive b and (b) over bar hadron decays, No evidence fur such effects is seen. The CP violation parameter Re(epsilon(B)) is measured to be Re(epsilon(B)) = 0.001 +/- 0.014 +/- 0.003and the fractional difference between b and (b) over bar hadron lifetimes is measured to(Delta tau/tau)(b) = tau(b hadron) - tau((b) over bar hadron)/tau(average) = -0.001 +/- 0.012 +/- 0.008
Effective Dark Matter Model: Relic density, CDMS II, Fermi LAT and LHC
The Cryogenic Dark Matter Search recently announced the observation of two
signal events with a 77% confidence level. Although statistically inconclusive,
it is nevertheless suggestive. In this work we present a model-independent
analysis on the implication of a positive signal in dark matter scattering off
nuclei. Assuming the interaction between (scalar, fermion or vector) dark
matter and the standard model induced by unknown new physics at the scale
, we examine various dimension-6 tree-level induced operators and
constrain them using the current experimental data, e.g. the WMAP data of the
relic abundance, CDMS II direct detection of the spin-independent scattering,
and indirect detection data (Fermi LAT cosmic gamma-ray), etc. Finally, the LHC
reach is also explored
Recommended from our members
Are researchers deliberately bypassing the technology transfer office? An analysis of TTO awareness
Most universities committed to the commercialization of academic research have established technology transfer offices (TTOs). Nonetheless, many researchers bypass these TTOs and take their inventions directly to the marketplace. While TTO bypassing has typically been portrayed as deliberate and undesirable behavior, we argue that it could be unintentional as many researchers may simply be unaware of the TTO’s existence. Taking an information-processing perspective and using data on 3250 researchers in 24 European universities, we examine researcher attributes associated with TTO awareness. Our evidence confirms that only a minority of researchers are aware of the existence of a TTO at their university. TTO awareness is greater among researchers who possess experience as entrepreneurs, closed many research and consulting contracts with industry partners, conduct research in medicine, engineering or life sciences, or occupy postdoctoral positions. Policy implications of these findings are discussed
Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV
The performance of muon reconstruction, identification, and triggering in CMS
has been studied using 40 inverse picobarns of data collected in pp collisions
at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection
criteria covering a wide range of physics analysis needs have been examined.
For all considered selections, the efficiency to reconstruct and identify a
muon with a transverse momentum pT larger than a few GeV is above 95% over the
whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4,
while the probability to misidentify a hadron as a muon is well below 1%. The
efficiency to trigger on single muons with pT above a few GeV is higher than
90% over the full eta range, and typically substantially better. The overall
momentum scale is measured to a precision of 0.2% with muons from Z decays. The
transverse momentum resolution varies from 1% to 6% depending on pseudorapidity
for muons with pT below 100 GeV and, using cosmic rays, it is shown to be
better than 10% in the central region up to pT = 1 TeV. Observed distributions
of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO
A role for β-catenin in diet-induced skeletal muscle insulin resistance.
A central characteristic of insulin resistance is the impaired ability for insulin to stimulate glucose uptake into skeletal muscle. While insulin resistance can occur distal to the canonical insulin receptor-PI3k-Akt signaling pathway, the signaling intermediates involved in the dysfunction are yet to be fully elucidated. β-catenin is an emerging distal regulator of skeletal muscle and adipocyte insulin-stimulated GLUT4 trafficking. Here, we investigate its role in skeletal muscle insulin resistance. Short-term (5-week) high-fat diet (HFD) decreased skeletal muscle β-catenin protein expression 27% (p = 0.03), and perturbed insulin-stimulated β-cateninS552 phosphorylation 21% (p = 0.009) without affecting insulin-stimulated Akt phosphorylation relative to chow-fed controls. Under chow conditions, mice with muscle-specific β-catenin deletion had impaired insulin responsiveness, whereas under HFD, both mice exhibited similar levels of insulin resistance (interaction effect of genotype × diet p < 0.05). Treatment of L6-GLUT4-myc myocytes with palmitate lower β-catenin protein expression by 75% (p = 0.02), and attenuated insulin-stimulated β-catenin phosphorylationS552 and actin remodeling (interaction effect of insulin × palmitate p < 0.05). Finally, β-cateninS552 phosphorylation was 45% lower in muscle biopsies from men with type 2 diabetes while total β-catenin expression was unchanged. These findings suggest that β-catenin dysfunction is associated with the development of insulin resistance.fals
- …
