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Abstract. A current global trend towards intensification or specialization of agricultural enterprises has been
accompanied by increasing public awareness of associated environmental consequences. Air and water pol-
lution from losses of nutrients, such as nitrogen (N) and sulphur (S), are a major concern. Governments have
initiated extensive regulatory frameworks, including various land use policies, in an attempt to control or
reduce the losses. This paper presents an overview of critical input and loss processes affecting N and S for
temperate climates, and provides some background to the discussion in subsequent papers evaluating specific
farming systems. Management effects on potential gaseous and leaching losses, the lack of synchrony between
supply of nutrients and plant demand, and options for optimizing the efficiency of N and S use are reviewed.
Integration of inorganic and organic fertilizer inputs and the equitable re-distribution of nutrients from man-
ure are discussed. The paper concludes by highlighting a need for innovative research that is also targeted to
practical approaches for reducing N and S losses, and improving the overall synchrony between supply and
demand.
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I N T RO D U C T I O N

Agriculture has undergone drastic changes over the last
four to five decades, and farms have increasingly

become more specialized and more intensive, with livestock
and arable production often being concentrated in different
regions of a country. These changes have been accompanied
by a greater potential for losses of nutrients, such as nitro-
gen (N) and sulphur (S), to the environment. Dissolved N
and S chemical species (mainly NO3

2 and SO4
22) may be

leached to surface and/or groundwaters, or lost through
gaseous emissions of ammonia, nitrous oxide (from
microbial nitrification and denitrification) and volatile
organic S compounds such as sulphides. Increased aware-
ness of these environmental effects, coupled with the
changes in farm systems, has stimulated extensive govern-
mental frameworks that are attempting to control or reduce
the losses through various regulations and land use policies.

Currently, there is another trend – primarily in North
American and European farming systems, but also in
China, Latin America and Africa – towards on-farm recy-
cling of animal manures or increased use of organic fertili-
zers that could lead to more sustainable nutrient
management (Stockdale et al. 2001). This shift towards
organic farming practices has received political attention in
Europe because the general public perceives that these
practices reduce environmental problems related to inten-
sive agriculture (National Research Council 1989; Gran-
stedt 1995). As an example, the Swedish parliament has
passed a law stating that by the year 2005, 20% of the agri-
cultural land should be under organic farming. However,
use of organic fertilizers on a large scale is not without
risk. Even with best management practices there are new
challenges associated with organic fertilizers, because the
risk of losses to water and air is potentially larger, and the
use efficiency is lower, compared with the use of equivalent
quantities of inorganic fertilizers (Bergström & Kirchmann
1999).

Nitrogen and sulphur are essential plant nutrients that
are often a focus for this nutrient management debate
because (i) the anionic forms (NO3

2 and SO4
22) of both

are mobile and easily lost from many soils through
leaching, and (ii) the overwhelming proportion of both
nutrients in the soil is found in an organic form and not
immediately available to plants. Therefore, management

1Soil & Land Systems, School of Earth & Environmental Sciences,
University of Adelaide, Roseworthy Campus, SA5371, Australia.
2Department of Agroecology, Danish Institute of Agricultural Sciences,
PO Box 50, 8830 Tjele, Denmark. 3Department of Soil Sciences, Swedish
University of Agricultural Sciences, Box 7014, SE-750 07 Uppsala,
Sweden. 4Institute of Atmospheric & Environmental Science, School of
GeoSciences, University of Edinburgh, Darwin Bldg, Mayfield Rd,
Edinburgh EH9 3JU, UK.
*Corresponding author. Fax: þ61 8 8303 7979.

E-mail: ann.mcneill[a]adelaide.edu.au

Nitrogen and sulphur management82

Soil Use and Management (2005) 21, 82–93 DOI: 10.1079/SUM2005303



solutions affecting one nutrient will also, potentially, have
an effect on the other. Also, over the last few decades,
industrial Western societies have reduced atmospheric pol-
lution by replacing high-S coal and oil with low-S natural
gas, nuclear energy, and renewable energy sources. These
changes in fuels, combined with the use of fertilizers with
lower by-product S, have resulted in a major reduction in
S deposition and application to the land. The reduced
inputs, coupled with cropping system changes that have
resulted in growing crops with a greater S requirement, for
example oilseed rape (Brassica napus L.), have thus created
a first-time need for S fertilization in some soils.

The multitude of interactions among agricultural prac-
tices (e.g. crop sequence), industrial practices (e.g. fuel
sources), and policy decisions (e.g. organic versus inorganic
farming systems) means that for increased sustainability it
is essential to consider how all factors may be affected
before adopting any one solution. In that context, this
paper presents quantitative information concerning the key
input and loss processes for N and S in temperate agricul-
tural systems. The focus is primarily on organic nutrient
sources because currently less information is available on
those practices than on inorganic ones (Watson et al. 2002).
Potential management solutions that can efficiently utilize
both inorganic and organic N and S sources for crop and
pasture production while minimizing losses to the environ-
ment are reviewed, although greater detail will be provided
in the subsequent papers of this Supplement dealing with
overall nutrient management for specific farming systems.

I N P U T S A N D R E C YC L I N G O F N I T RO G E N
A N D S U L P H U R

Atmospheric deposition
Deposition of N can vary between 5 kg N ha21 yr21 in
northern Scandinavia and 45 kg ha21 yr21 in the Benelux
countries (Ferm 1998). In Western Europe and other inten-
sively farmed regions, most N that is deposited has

previously been emitted as ammonia (NH3) from manure
(faeces and urine) of agricultural livestock (ECETOC
1994), or as NOx compounds from vehicular traffic and
stationary combustion (Dentener & Crutzen 1994). Emis-
sion and deposition of ammoniacal N in Europe is still con-
siderable, despite measures to reduce NH3 volatilization
from agriculture. Such measures include covering slurry
and urine storage facilities, rapid incorporation of animal
wastes after spreading on bare soil, development of new
spreading techniques, and improved handling and venti-
lation within animal houses (Gustavsson 1998). Further-
more, because all atmospheric N compounds are water-
soluble and easily taken up by organisms, deposition readily
leads to eutrophication, acidification and/or damage to sen-
sitive types of vegetation, for example natural ecosystems
such as woodland, heathland or grassland, if the critical
load is exceeded.

In contrast to high N deposition, sulphur deficiencies
have been reported in previously S-sufficient areas. The
main reasons for this include: (i) the environmental control
of SO2 emissions in industrial areas and ensuing declines in
S deposition, (ii) the increasing use of P fertilizers with a
low S content, (iii) the increase in yields obtained as a
result of other technological improvements, and (iv) the
decreasing use of S-containing pesticides (Blair 2002). In
Europe, concentrations of SO2 in the atmosphere have
decreased dramatically during the last 20–30 years
(Figure 1), leading to decreased deposition of S on agricul-
tural land. Current total S deposition calculated by EMEP
(Programme for Monitoring and Evaluating of Long-range
Transmission of Air Pollutants in Europe) ranges from
1 kg S ha21 yr21 in rural areas of northern Norway to more
than 20 kg ha21 yr21 in industrial areas, with an average of
2–10 kg S ha21 in many areas (McGrath et al. 2002).

Legume nitrogen fixation
Inputs of biologically fixed N to temperate farming systems
occur largely via legume–rhizobium symbioses, with
relatively insignificant additions from non-symbiotic and

Figure 1. Atmospheric sulphur dioxide concentration at different sites in Europe. (Source: NILU 2003.)
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associative sources (Chalk 1991; Kennedy & Islam 2001).
The potential for N fixation within temperate farming sys-
tems ranges from 200 to 700 kg N ha21 yr21, depending
upon the type of legume (Ledgard 2001), although the
potential is often not achieved and values as low as
2 kg N ha21 yr21 have been reported (Peoples et al. 1995).

Overall, inputs of fixed N are governed by the pro-
ductivity of the legume as influenced by management, cli-
matic and edaphic conditions and the dependence of the
legume on N fixation (Van Kessel & Hartley 2000).
The latter is primarily determined by the effectiveness of
the host legume–rhizobium symbiosis and has been
reported to vary widely both within and between legume
species (Peoples et al. 1995; Jensen 1997; Unkovich & Pate
2000; Peoples & Baldock 2001). Published field data are
relatively scarce, particularly for cool temperate regions,
but Australian studies suggest that fixation is often lower
than the optimum due to absence of suitable rhizobium
strains or inhibition of an effective symbiosis by elevated N
fertility status of the soil (Schwenke et al. 1998).

Nitrogen inputs from grain legumes are highly depen-
dent on the crop N harvest index, that is the proportion of
total above-ground N production removed as grain. Data
from temperate Europe and Asia, North America and
Australia (Beck et al. 1991; Peoples et al. 1995; Jensen
1997; Van Kessel & Hartley 2000) show an enormous range
in this variable, and it is not surprising that some studies
show a positive effect of grain legumes on the soil N bal-
ance (Badaruddin & Meyer 1994; White et al. 1994;
Schwenke et al. 1998), whereas others show a neutral or a
negative effect (Beck et al. 1991; Hossain et al. 1996;
Armstrong et al. 1997). However, most of these N balances
have probably underestimated the below-ground input of
fixed N by legumes due to problems of root sampling and
quantifying root exudates or rhizodeposition (Russell &
Fillery 1996; Jørgensen & Ledgard 1997; McNeill et al.
1997; Unkovich et al. 1997; Rochester et al. 1998;
Papastylianou 1999; Khan et al. 2003; Mayer et al. 2003).

Quantifying inputs of fixed N by pasture and forage
legumes is difficult, owing to the recycling that occurs
through the grazing animal and the N transfer between
legume and non-legume species in the system. The fixation
is also regulated by a feedback mechanism involving the
soil inorganic N content and competition from associated
grasses (Ledgard & Steele 1992). Field studies report fix-
ation rates from as low as 2 kg N ha21 yr21 up to
315 kg N ha21 yr21 (Vinther & Jensen 2000; Ledgard 2001;
Peoples & Baldock 2001). Clearly, including estimates of
fixed N partitioned below ground (as mentioned pre-
viously) would increase the magnitude of these estimates.

Nitrogen fixed by legumes represents a key contribution
to nutrient cycling in legume-based farming systems by
increasing soil organic N status, although the process may
also contribute to an elevated nitrate leaching potential on
certain soil types if not managed effectively.

Plant residues and soil organic matter (SOM)
The magnitude and timing of N and S release from resi-
dues, and any subsequent immobilization, are strongly
influenced by the efficiency of carbon (C) use by the

decomposer population, the demand for N and S,
the chemical nature of the plant residues and a range of
soil factors (Kumar & Goh 2000). For non-leguminous
crops, return of residues ‘in situ’ is not strictly an input but
can be considered ‘recycling’ of nutrients, extracted from,
and then returned to, the labile SOM pool (Jenkinson
1990; Parton et al. 1994). Subsequently, the organic N and
S may enter either a more stable organic matter pool or an
inorganic (plant-available) pool.

Immature or ‘fresh’ plant materials, such as those in
green manures, primarily contain sulphate (up to 10% of
total S content) and nitrate (up to 5% of total N content)
that may be very rapidly released and available for plant
uptake (Whitehead 2000). These ‘fresh’ or green residues
tend to decompose rapidly, with up to 40% of residue
mineralized after one year. Mature residues decompose
more slowly than ‘fresh’ residues because of a wider C/N
ratio and greater lignin/N or polyphenol/N ratios. The
impact of these differences in residue decomposition rates
on N and S cycling is that 10–20% of N in green residues
will typically be utilized by the immediate or succeeding
crop, whereas ,10% of the N in mature residues is taken
up (Fillery 2001 and references therein). The primary sink
for most of the N in legume residues is the SOM pool;
nevertheless, research has clearly highlighted that N
released from legume residues needs to be synchronized
with the demand for N by the following crop (Myers et al.
1994, 1997) in order to prevent substantial leaching losses
of legume-derived nitrate under wet temperate conditions
(see later section on loss processes) or after fallow periods.

Animal manures
On a dry matter basis, N and S concentrations in animal
wastes amount to 1.9–10% N (mean: 3.2% N) and 0.6–
0.7% S (Kirchmann & Witter 1992; Steineck et al. 1999).
This is equivalent to 70–80% of the amount present in
fodder. The N and S contents of stored manures can
vary, as often they are mixtures of excreta of different age
from animals fed different diets, and possibly come from
different animal species. Slurries may contain 2.8–
5.1 kg N m23 and 0.15–0.7 kg S m23 (Eriksen et al. 1995),
and manures 4.8 – 7.7 kg N t21and 0.69–1.4 kg S t21 wet
weight (Steineck et al. 1999). On a global scale, S excretion
from farm animals is estimated to be around 8 million
metric tonnes per year, corresponding to 80% of the world
consumption of mineral S fertilizer (Eriksen 2002).

The conversion of dietary N into animal protein typi-
cally ranges from 5 to 20% and is generally lower for
legumes than grasses (Ulyatt et al. 1988). Balancing the
supply of N in animal diets can be easily achieved by using
legumes or well-fertilized non-legumes as fodder, but the
intake of S by animals may often be limited by a low S con-
tent of the fodder. For example, in diets for monogastrics
where cereal grains constitute the main source of protein,
methionine is often one of the most limiting essential
amino acids (Heger et al. 1997). Also, cattle diets in areas
with low S deposition may be short of S (Aaes & Thøger-
sen 1999). Under such conditions, the S content of the
manure will be relatively low and mainly in the organic
form, which is not readily available to crops after soil
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application. Furthermore, more efficient fodder utilization
may also affect amounts of N and S excreted per unit of
animal or milk produced, which may affect the composition
of animal wastes. A greater portion of N and S will prob-
ably be present in organic forms in animal wastes and less
will be present in urine (Kyvsgaard et al. 2000).

Annual application of manure will increase the soil
organic N and S content in the long term, although the
extent of this increase depends on soil type, cropping sys-
tem and management. Manure applications may also
increase the potential mineralization rate. Therefore, a
residual effect of long-term organic manure application on
the capacity of the system to supply plant-available N
should be expected, although there is no evidence that
either organic N or organic S in manure will mineralize
more readily than the bulk of soil organic N or S. The abil-
ity of a cropping system to utilize mineralized N and S will
depend on the length of the growing season, although (as
mentioned in the previous section) mineralization is unli-
kely to fully match crop demand.

LO S S P RO C E S S E S F O R N I T RO G E N A N D
S U L P H U R

Volatilization

Manure may be deposited by grazing livestock directly on
to pastures, or spread on the land surface as solid farmyard
manure (FYM) or liquid slurry, and often can correspond
to an annual application rate of several hundred kilograms
of N per hectare. Following excreta deposition or manure
spreading, the fraction of N lost depends on several
environmental and edaphic factors. The rates of hydrolysis
of urea and dissociation of NH4

þ to dissolved NH3 and Hþ

are both temperature-dependent, as is the rate of diffusion
of dissolved NH3 to the interface with the atmosphere.
This means that the rate of emission of NH3 to the atmos-
phere increases substantially as the ambient temperature
increases. Other factors include: the micrometeorological
conditions affecting the rate of transfer of ammonia from
the land surface into the atmosphere; the depth of appli-
cation; within the soil; the initial pH (losses are inevitably
greater in soils that are already alkaline); the buffer capacity
of the soil; and the soil water content (e.g. Yan et al. 2003).

Ammonia emissions from land-spreading of solid, straw-
based FYM from cattle and pig housings can be of the
order of two-thirds of the total ammoniacal nitrogen
(TAN) content (Chambers et al. 1997; Menzi et al. 1997;
Misselbrook et al. 2000). Similar losses from liquid slurries
spread on the soil surface have been reported (Huijsmans
et al. 1997; Misselbrook et al. 2000). Ammonia losses
increase with increasing dry matter (DM) content of the
slurry (Jarvis & Pain 1990; Sommer & Olesen 1991), within
a range of 1–9% DM for applications in the autumn–
spring period (Smith & Chambers 1995). The emissions
from ammoniacal and uric acid N in poultry manures are
substantially lower than those from cattle and pig manures
(Chambers et al. 1997; Menzi et al. 1997).

During storage of animal wastes in slurry tanks, urine
pits and solid manure heaps or piles, anaerobic microbial

processes dominate, whereas aerobic decomposition prevails
only in well-aerated composts and deep litter. Formation of
volatile ammonia or ammonium from organically bound N
is a main change during anaerobic storage (Kirchmann &
Witter 1989). Similarly, S present as SO4

22 can be reduced
and gaseous S compounds formed under anaerobic storage
conditions. These compounds, such as carbon disulphide
(CS2), carbonyl sulphide (COS), dimethyl sulphide
(CH3SCH3), dimethyl disulphide (CH3SSCH3) and methyl
mercaptan (CH3SH), as well as hydrogen sulphide (H2S),
can be lost through volatilization (Banwart & Bremner
1975). However, Beard & Guenzi (1983) reported minimal
loss of S by volatilization from stored slurries where redox
conditions were controlled. Another study by Eriksen et al.
(1995) reported a decrease in the total SO4

22 concentration
(organic ester sulphates and SO4

22) and an increase in sul-
phide and C-bonded S in both cattle and pig slurry during
storage from February to November. Therefore, as a conse-
quence of storage, different slurries may be expected to
have different levels of plant-available S and N.

The anaerobic conditions that are sometimes induced
during application of large amounts of manures to fields
can also result in production of volatile sulphides (mainly
H2S). However, these sulphides generally react with soil
constituents such as Fe oxides to form FeS2 or FeS (Met-
son 1979), which often results in no volatilization of H2S
from soils (Freney 1986), except when waterlogging is com-
plete and prolonged, and trace amounts of carbon disul-
phide or dimethyl sulphide produced by microorganisms
may volatilize (Farwell et al. 1979; Brown 1982). Janzen &
Ellert (1998) found emissions of S from soil to have a
mean rate of less than 0.2 kg S ha21 yr21 and from plants
0.1–3 kg S ha21 yr21.

Denitrification
Microbial denitrification – the anaerobic reduction of
nitrate present in the soil to gaseous nitrous oxide (N2O),
nitric oxide (NO) and dinitrogen (N2) – is the main pro-
cess by which chemically or biologically fixed N is returned
to the atmosphere. Estimates of the quantities of N lost by
the denitrification mechanism from agricultural soils have
varied widely. Hauck (1986) suggested losses of 20–40% of
the N applied, whereas Nieder et al. (1989) gave figures for
cropland ranging from 2.5% to more than 50%.

Nitrate is the principal substrate for denitrification, and
thus is a key driving variable (Weier et al. 1993), since low
concentrations of NO3

2 constrain denitrification rates. The
soil water content (more particularly the water-filled pore
space [WFPS] with its effect on soil aeration) is another
major controlling factor. Diffusion of oxygen throughout
the soil matrix is usually sufficient to prevent substantial
rates of denitrification in soils with plenty of macropores,
for example, in coarse sandy soils and in finer textured
ones with good structure. However, where there is poor
structure – with larger peds rather than small crumbs
being common, or loss of air-filled macropores as a result
of compaction by wheels, tillage machinery, or livestock
hooves – the outcome is likely to be the development of
anaerobic zones within some of the soil structural units,
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and an enhancement of denitrification (e.g. Nieder et al.
1989; Arah et al. 1991).

Soils with greater amounts of labile organic matter will
respire faster than those with less, and thus the former
have a greater potential for denitrification than the latter
(Bijay-Singh et al. 1988). Webster & Goulding (1989)
showed that plots with high C content, as a result of receiv-
ing large inputs of FYM over many years, showed much
higher denitrification rates in the autumn than adjacent
plots that had received only mineral fertilizers.

Recorded rates of denitrification are relatively few,
because of the experimental difficulty associated with mak-
ing quantitative measurements, but even so, values up to
some hundreds (and, occasionally thousands) of grams of
N per hectare per day have been reported (Arah et al.
1991; Weier et al. 1993). Losses exacerbated by the addition
of plant residues have been identified in some studies. For
example, on a clay loam soil in Scotland where plots were
ploughed and sown to grass in July with an addition of
64 kg N ha21 as Ca(NO3)2, about 18 kg N ha21 were denitri-
fied from the plots without residues, and twice that amount
from those with residues (Vinten et al. 1996). There is
other evidence that N-rich crop residues may stimulate
rapid denitrification and associated nitrous oxide emissions,
even in coarse-textured soil. For example, Velthof et al.
(2002) reported that N2O emissions range up to 14.6% of
the N added as brassica and sugar beet residues, whereas
emissions after adding cereal residues were not significantly
different from the control. Similarly, Baggs et al. (2000)
found that more than 1 kg N2O-N ha21 was released from a
freely drained loamy sand over the first 14 days after incor-
poration of lettuce (Lactuca sativa L.) residues.

Leaching
Leaching of inorganic N as nitrate (NO3

2), either applied
as a fertilizer or derived from mineralization of organic
matter inputs, is affected by climate, soil type, geo-hydrolo-
gical conditions, crop species, timing and rate of fertilizer
inputs, and soil management. Generally, NO3

2 leaching
increases as the input of NO3

2-N increases, although the
increase in leaching is usually not continuous but follows a
linear split-line relationship with a distinct break-point (e.g.
Bergström & Brink 1986; Lord & Mitchell 1998). From
zero NO3

2-N addition up to optimum application rates, the
increase in NO3

2 leaching is minimal, whereas at higher
rates leaching often increases considerably.

Lord & Mitchell (1998) showed that as long as crop
removal of N was 52% of that applied to cereal crops,
which is the normal efficiency at economic optimum con-
ditions, leaching was hardly affected at all by the NO3

2-N
input. However, because of the uncertainty involved in pre-
dicting the break-point, it was concluded that a small
reduction in N input below the expected economic opti-
mum rate is desirable to considerably reduce the risk of
high N-leaching losses. Another strategy is to use multiple,
small fertilizer-N applications, although the long-term
effects of differentiated N applications are still relatively
unknown.

Application of large amounts of manure on agricultural
fields certainly increases the risk of high N-leaching loads,

particularly where drainage is an important component of
the water balance. Even relatively modest application rates
of manure N (e.g. 110 kg NH4

þ-N ha21) can result in
N-leaching loads that are higher than if corresponding
amounts of inorganic N fertilizers are used (Kemppainen
1995; Thomsen et al. 1997), particularly where minerali-
zation and plant uptake are not synchronized. For example,
in a study where an equal amount of N as manure or in-
organic fertilizer (100 kg ha21) was applied to barley,
leaching of N originating from manure was almost ten times
higher than that of fertilizer N (Bergström & Kirchmann
1999). However, given best practice management in both
cases, leaching loss under an organic system was reported as
similar to, or slightly smaller than, that from a conventional
system (Stopes et al. 2002).

Total N leaching losses in grazed systems vary, ranging
from relatively small amounts (6–34 kg N ha21) on sheep-
grazed temperate grass/clover pastures (Cuttle et al. 1998)
to larger amounts (20–74 kg N ha21) reported for inten-
sively grazed dairy cattle pastures (Ledgard et al. 1999). In
one study, about 55% of the leached N was derived from
the urine patches (Ruz-Jerez et al. 1995), probably because
deposition of N in urine patches by grazing animals gener-
ally exceeds the capacity of the plants to utilize the in-
organic N produced, particularly NO3

2 (Ball & Ryden
1984; Haynes & Williams 1993). Reports of the contri-
bution of legume-fixed N to leaching losses also range
widely from 8 to 80% (Anderson et al. 1998a, b; Ledgard
et al. 1999; Ridley et al. 2001).

Evidence suggests that excess S inputs from atmospheric
deposition in the past were leached as SO4

22 (Eriksen 1996;
Knights et al. 2000), particularly on certain soil types. The
retention of SO4

22 in soils depends on the nature of the
charged mineral surfaces, the pH, and concentrations of
SO4

22 and other ions in the soil solution (Harward & Reise-
nauer 1966); furthermore, above pH 6 virtually all soil
SO4

22 is found in solution (Curtin & Syers 1990). Even in
soils with mineralogy conducive to a high SO4

22 retention
capacity, the retention is weak at high pH, and SO4

22 can
be removed by repeated extractions with water (Chao et al.
1962). As a consequence, many agricultural soils are prone
to SO4

22 leaching, and the amount of leached SO4
22 is clo-

sely related to the drainage volume (Shepherd & Bennett
1998; Eriksen & Askegaard 2000).

In a dairy crop rotation on a sandy soil, the average
SO4

22 leaching from the crop rotation was 20 kg S ha21

yr21, equivalent to 60% of the total input to the rotation
(Eriksen & Askegaard 2000). Sulphate leaching was very
variable, ranging from 4 to 45 kg S ha21 yr21 for the same
crop in different years. In a long-term field experiment on
a clay loam in south-central Sweden, the average leaching
during 35 years in plots treated with Ca (NO3)2, green
manure and animal manure was estimated to be 24, 34 and
38 kg S ha21 yr21, respectively, which corresponded to 65,
71 and 69% of the S inputs (Kirchmann et al. 1996).
Obviously, reliable estimates of SO4

22 leaching will be
required when mass balances are used for determining the
S status at field or farm level. This is especially important
for temperate regions with a high winter rainfall and soils
with a low SO4

22 retention capacity.
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O P T I M I Z I N G U S E E F F I C I E N C Y O F
N I T RO G E N A N D S U L P H U R

This section focuses on potential management options to
improve the management of N and S in agricultural sys-
tems by optimizing inputs from legume N fixation, plant
residues and animal wastes, while minimizing losses via vol-
atilization, denitrification and leaching. Central to these
management strategies is recognition of the lack of syn-
chrony between nutrient release from organic sources and
crop demand in current farming systems, and thus the
potential requirement for integration of organic and inor-
ganic fertilizer inputs. The concept of equitable re-distri-
bution of nutrients from manure is also discussed.

Inputs from legume nitrogen fixation and plant residues
Management practices that can optimize inputs from
legume N fixation include maximizing plant growth by
providing adequate nutrition, especially P, ensuring the
presence of an effective rhizobium strain, and minimizing
pests and diseases. Also, in a rotation, sowing the legumes
into soils with low inorganic N status can increase N fix-
ation. Manipulating the mixture of non-legume and legume
species within a pasture, for example by using appropriate
grazing strategies, can also enhance legume N fixation.

Transfer of fixed N within a single season from legume
to non-legume via rhizodeposition is recognized around the
world as a vitally important component of nutrient cycling
in low-input temperate pasture systems (Boller & Nösber-
ger 1987; Ledgard & Steele 1992). Controlled environment
studies have demonstrated that as much as 15% of total
plant N in ryegrass can originate from N exuded from
companion white clover (Paynel et al. 2001). Long-term
studies in the field have produced results of a similar order
of magnitude for older pasture plants (Soussana & Hartwig
1996; Høgh-Jensen & Schjoerring 2001), as well as for
some grain legumes (Sawatsky & Soper 1991; Jensen
1996c), with substantial uptake by companion non-legume
crop species (Jensen 1996a). The significance of transfer of
fixed N under field conditions within a season, for temper-
ate inter-cropping systems, has yet to be clearly defined;
reports from the limited data available are mixed (Danso
et al. 1987; Papastylianou 1988; Cowell et al. 1989; Izaur-
ralde et al. 1992; Waterer et al. 1994; Jensen 1996b). Over-
all, the amount of transfer will, of course, depend on plant
species and plant age, as well as on the abiotic and biotic
environment (Fujita et al. 1992). It will also be influenced
by defoliation (grazing or cutting), although quantifying
the effects of such management practices on N transfer has
proved difficult and further research is required (Ledgard
2001).

The asynchrony in supply and demand for N and S in
organic systems is a major concern and may not be recog-
nized by policy-makers advocating increased adoption of
those practices. Current research has focused on manipulat-
ing residue quality and quantity, including additions of on-
farm and off-farm waste products, to manage nutrient
supply and availability to crops. The time course of net N
mineralization has been affected by manipulation of the
residue C/N ratio, or the phenol content, but also by

varying types and concentrations of carbohydrates (e.g.
Handayanto et al. 1997; Gunnarsson & Marstorp 2002;
Rahn et al. 2003; De Neve et al. 2004). These practices are
particularly critical for areas where leaching is likely (see
section below on leaching). However, most approaches,
while reducing the high N release, also reduced the total
amount of available N in the long term (Handayanto et al.
1997). There is clearly a need to identify practices that both
improve synchrony and can be adopted by farmers (Myers
et al. 1997). In drier climates, this may include management
strategies that ensure rapid root development and thus crop
N uptake in response to the onset of rains. Other
suggestions for exploiting resource capture include relay
cropping with deep-rooted cover crop species (Giller et al.
1997), intercropping (Watson et al. 2002) and selection of
crop varieties or types that are efficient in utilizing available
nutrients (Foulkes et al. 1998, Le Gouis et al. 2000).

Managing nitrogen in animal wastes
As mentioned earlier, volatilization of NH3 from animal
wastes can occur during housing, storage, application
to soil, or grazing (Bussink & Oenema 1998). Measures to
minimize losses of NH3 should lead to an improved utiliz-
ation of manure N, but all parts of the manure handling
chain need to be considered, since intervening in one part
affects losses in another. For example, losses are more likely
during aerobic storage of manures (composting) than after
subsequent soil application, because the remaining N is
mainly in organically bound N forms (.90%) and thus
concentrations of inorganic N are very low (Kirchmann
1985). On the other hand, following anaerobic storage a sig-
nificant part of the manure N is present as NH4

þ and there
is a potential for large gaseous losses when the manure is
applied to soil. Kirchmann & Lundwall (1998) concluded
that anaerobic waste management, which is standard agri-
cultural practice in Europe, resulted in smaller ammonia
losses overall than aerobic treatment. They reported
a minimum of 10–15% of the total N present lost from the
former, but at least 20% and up to 70% from the latter.

A major reduction in gaseous emissions from anaerobic
wastes can be achieved by replacing simple surface-spread-
ing techniques by other procedures, such as narrow-band
application to the soil surface or shallow injection into open
or closed slots (Huijsmans et al. 1997; Lorenz & Steffens
1997). Huijsmans et al. (2001) found that, on average,
narrow-band application reduced emissions by 74% com-
pared with those following surface spreading, and injection
reduced them by 92% (Table 1). However, Pain & Missel-
brook (1997) reported much smaller reductions in the UK.

Table 1. Cumulative NH3 losses over 96 h after application of slurry to
grassland by different methods. (Based on data of Huijsmans et al. 2001.)

Application method NH3 losses
(% of NH4-N applied)

Range Mean

Surface spreading 27–98 77
Narrow band spreading 8–50 20
Shallow injection 1–25 6
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Apart from these issues of N conservation during sto-
rage, handling and application of manure, the ultimate
availability of the N for plant uptake is also important.
This will clearly be a function of chemical composition.
Inorganic N in anaerobic manure has been shown to be
equally as plant-available as N from inorganic fertilizer, if
the materials are applied at the same time of the year
(Kirchmann 1989). Fatty acids present in anaerobic man-
ures can cause a short-term, initial immobilization of N,
but this does not seem to affect N utilization over a grow-
ing season (Kirchmann & Lundvall 1993). In contrast,
organic N in aerobically stabilized manures is only available
to crops after net N mineralization, which is not necessarily
synchronized with plant demand (Myers et al. 1997). Thus,
inorganic N derived from organic sources may potentially
be lost via leaching or denitrification.

A more fundamental approach towards reducing ammo-
nia emissions from livestock systems is to decrease N
inputs, as opposed to dealing with the N-rich manure after
it is produced. Hilhorst et al. (2001) showed that very high
N utilization efficiencies in animal nutrition and crop pro-
duction permitted a similar milk production to that of con-
ventional intensive dairy farms, but at a much lower input
level, while achieving a reduction in the annual NH3 emis-
sion from 64 kg NH3-N ha21 on the average farm to only
20 kg NH3-N ha21. Ledgard (2001) discussed the potential
for improving N utilization by grazing animals and high-
lighted the need for more innovative approaches, such as
dietary manipulation involving certain fodder species or
supplements that alter the ratio of dung to urine in the
excreta and thus reduce the potential for losses.

Management options to reduce nitrogen leaching
Preventing N leaching is most critical in areas with light-
textured soils, in cold and humid climates and where geo-
hydrological conditions allow for deep percolation of infil-
trating water. In these regions, it is obvious that manures
applied to bare soil in autumn pose a higher risk for leach-
ing than when they are applied in spring. In particular,
early applications immediately following harvest can
increase N leaching several-fold compared with early win-
ter/spring applications (Beckwith et al. 1998). The appli-
cation rate of manure on individual fields, which will
determine the risk for leaching, depends largely on the
number of animal units on each farm. In Sweden, there are
regulations limiting the stocking rate to 1.6 large livestock
units per hectare, based on annual P removal by crops.
However, preliminary estimates based on the above-men-
tioned study by Bergström & Kirchmann (1999) indicated
that this number had to be lowered to 0.2 in order to
reduce N leaching to the level obtained when
100 kg N ha21 of inorganic N fertilizer was used. In Den-
mark, the number of livestock units is not regulated, but
the total application of manure N and fertilizer N on each
field is controlled instead.

In cold, humid regions, the problems associated with
manures are caused by the fact that inorganic N is often
released too late in the season, or after the growing season,
and is therefore available for leaching. One solution to
reduce this asynchrony between demand and supply of N

is to modify the composition of the organic materials that
are applied on fields. This can be achieved by adding
organic materials with a high C/N ratio (e.g. paper-mill
waste; Kirchmann & Bergström 2003) to the animal man-
ures when they are incorporated into soil. Such practices
lead to increased N immobilization during periods when
the risk for N losses is high.

In recent years, cover crops or ‘catch crops’, have proven
to be effective in reducing N leaching when grown in con-
junction with crops that require high levels of N, such as
maize (Zea mays L.) and other cereal grains (see reviews by
Meisinger et al. 1991 and Aronsson 2000). The cover crop
can take up substantial amounts of N after harvest of the
main crop in autumn, and several studies around the world
have demonstrated large consequent reductions in N leach-
ing (Martinez & Guiraud 1990; Nygaard Sørensen 1991;
Shepherd 1999; Bergström & Jokela 2001), in some cases
by greater than 80% (Lewan 1994). However, there are still
uncertainties on how decomposition and mineralization of
cover crop residues that are incorporated into soil will
affect leaching of N over the long term. Some will be
mineralized very soon after incorporation and some will
form quite stable fractions and enter the soil humus pool.
Especially when growing cover crops repeatedly, this
increase in humus may contribute to larger N leaching
losses over the long term, even though the short-term
effect is favourable. Nevertheless, there is reason to believe
that cover crops will be used in the future to reduce N
leaching effectively.

The tremendous spatial variability in soil properties and
environmental conditions in a region needs to be taken into
account when considering countermeasures for reducing N
leaching (e.g. cover crops, minimum tillage). Thus, prac-
tices can be targeted to the most sensitive areas, and these
may range from catchments to sub-catchments, whole
farms to individual fields, and even parts of fields.

Management options for sulphur
Although the organic S fraction of soil and added manures
may be important for the supply of S to plants in
deficiency situations, it is often found that mineralization
of soil organic S cannot supply the required amount
(Eriksen et al. 1998; Scherer 2001). Lloyd (1994) found a
relative use efficiency of S in cattle slurry of 55% com-
pared to gypsum (CaSO4·2H2O) when applied to grass
intended for silage. However, this was much higher than
the relative use efficiency of 5% found by Eriksen et al.
(1995) when applying slurry to spring oilseed rape in a pot
experiment. Application of mineral S fertilizer dramatically
increased seed yield and S uptake of oilseed rape. In con-
trast, application rates equivalent to 25 and 50 tonnes of
slurry per hectare did not have any effect on seed yield and
only slightly increased the S uptake. So if crop yields and
quality are to be maintained at present levels, the
reductions in atmospheric deposition of S have to be partly
replaced by use of inorganic S fertilizers. Indeed, Zhao
et al. (2002) reviewed crop responses to S fertilization in
Europe and concluded that S is now one of the most
limiting nutrients for agricultural production in many
European countries.
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Soils most likely to show a sulphur response are free
draining sandy soils with low organic matter content. Since
SO4

22 is readily leached from the soil there is no point in
attempting to raise soil S levels by excessive fertilization.
Furthermore, on livestock farms, excess S may depress the
uptake of selenium in herbage and interfere with
the absorption of copper by animals (Till 2002). Walker &
Dawson (2002) reviewed the S fertilizer recommendations
in Europe and found that most advisory bodies across
Europe adopted an empirical system of advisory level of S
required based on potential yield of crop, soil type and
farming system.

To maintain a sufficient S supply in the future, when
further reductions in the atmospheric deposition may be
expected, it is important to reduce the leaching losses of
SO4

22. Catch crops, especially cruciferous crops that have
a high S demand and vigorous root growth, can do this
effectively (Eriksen & Thorup-Kristensen 2002). In a crop
rotation including both low S-demanding cereals and high
S-demanding main crops (e.g. crucifers or vegetables), a
suitable catch crop strategy may prevent excess SO4

22 from
leaching in years when low S-demanding crops are grown,
and instead transfer S to the following high S-demanding
crop. This is most important in low input systems, for
example organic farming, but also of relevance to other
farming systems. For such a strategy to work it is important
that S immobilized in the catch crop is mineralized rapidly
after incorporation. However, mineralization rates depend
much on the choice of catch crop. The highest rates have
been found for cruciferous crops and the lowest ones for
legumes (Eriksen & Thorup-Kristensen 2003). Differences
were partly explained by the C/S ratio of the decomposing
plant material. It is generally claimed that SO4

22 is minera-
lized from organic material when the C/S ratio is less than
200 and is immobilized if the C/S ratio is above 400,
whereas C/S ratios between 200 and 400 may cause either
net mineralization or net immobilization (Barrow 1960).
This rule seems to apply across different organic materials
such as sludge, animal manure and plant material (Tabata-
bai & Chae 1991; Musvoto et al. 2000; Reddy et al. 2002;
Eriksen & Thorup-Kristensen 2003). Thus, it is always
advisable to use supplemental S fertilizers during the incor-
poration of strongly immobilizing materials.

Equitable re-distribution of nutrients from manure
Intensive livestock farming usually requires purchase of
supplementary feedstuff, and this represents an input to
the farm which, following utilization by animals, results in
a surplus of nutrients, including N and S. There are regu-
lations aimed at minimizing nutrient accumulation in soils
on animal farms, allowing a maximum animal density per
unit of arable land (Sweden) or a maximum nutrient appli-
cation through animal wastes per unit of land (Denmark).
Nevertheless, it is almost impossible, using current manure
management practices, to ensure that nutrients are equita-
bly re-distributed. Thus the nutrient budgets of intensive
livestock farms are generally imbalanced. Currently, due to
the high water and relatively low nutrient contents in
animal manures as compared to concentrated inorganic fer-
tilizers, transport of these waste products is economically

and practically feasible over only short distances. Further-
more, application of animal manures to soil requires more
energy than harvesting operations. Economic studies indi-
cate that the fertilizer value of solid cattle manure covers
the cost of transportation only up to a distance of about 15
kilometers, and even shorter distances for slurries (Greaves
et al. 1999).

It has been suggested that the widespread establishment
of self-sustaining, mixed organic farms across regions
might lead to more uniform re-distribution of nutrients
present in manures, although the economic and environ-
mental implications of such changes have not been con-
sidered. Another view is that the problem of imbalanced
re-distribution of nutrients present in animal manures
could be overcome, not through a restructuring of agricul-
tural production, but by improvements in the processing of
the large quantities of wastes generated by intensive live-
stock enterprises, so as to allow for more equitable re-dis-
tribution of the nutrients they contain.

Development of new technologies to extract nutrients
out of organic wastes may provide a solution to the imbal-
anced re-distribution to agricultural soils. For example, one
method for recovery of N and P from manures (Schuiling
& Andrade 1999) is based on precipitation as struvite (mag-
nesium ammonium phosphate). Recovery of nutrients in
water-soluble forms from animal wastes would be the most
desired agronomic option, providing farmers with efficient
fertilizers. An optimal concept might be a centralized
regional plant producing biogas from animal wastes
brought from livestock farms, and including nutrient
extraction and production of inorganic fertilizer
compounds.

S U M M A RY A N D C O N C LU S I O N

Clearly, several common critical factors need to be con-
sidered for efficient management of N and S in agricultural
systems, especially for those with an emphasis on organic
nutrient sources. Leaching losses of N and S, induced by
additions of high quality plant residues with low C/N or
C/S ratios (e.g. leguminous or cruciferous green manures)
as well as large quantities of animal manures, are of
major concern. Besides potentially large leaching loads,
substantial emissions of N as ammonia are also associated
with land-spreading of manures, whereas volatile losses of
S have been much less well characterized. Large inputs
of manure also increase the C content in soil and conse-
quently enhance the potential for further losses of N via
denitrification. Other volatile losses of N and S can occur
during the manure handling chain, although management
guidelines for storage of manures in intensive enterprises in
Europe and the USA are currently well developed.

There is no doubt that organic materials represent a
major nutrient input to many farming systems, particularly
in the case of N from legumes and both N and S in man-
ures. However, efficient use of the inputs is often hampered
by asynchrony between plant-available release from the
organic source and crop demand, primarily driven by the
quantity and quality of the input. Although there are
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currently some options for managing these organic inputs
of N and S, such as minimizing tillage, optimizing timing
of manure applications and using cover or catch crops, it is
critical that further innovative research is undertaken,
aimed at improving the efficiency of N and S cycling in all
farming systems. Approaches may include:
. selection of appropriate crop and pasture species/mix-

tures;
. addition of on- and off-farm wastes to manipulate soil N

and S supply;
. altering the cycling of N and S via animal excreta by

changing animal diets;
. developing new strategies, such as nutrient extraction

from animal wastes and use of feed pad systems, to
redistribute outputs from grazing animals.
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mental Protection Agency, Report 4974, Stockholm Sweden.

Stockdale EA Lampkin NH Hovi M Keatinge R Lennartsson EKM Mac-
Donald DW Padel S Tattersall FH Wolfe MS & Watson CA 2001.
Agronomic and environmental implications of organic farming systems.
Advances in Agronomy 70, 261–327.

Stopes C Lord EI Phillips L & Woodward L 2002. Nitrate leaching from
organic farms and conventional farms following best practice. Soil Use
and Management 18, 256–263.

Tabatabai MA & Chae YM 1991. Mineralization of sulfur in soils amended
with organic wastes. Journal of Environmental Quality 20, 684–690.

Nitrogen and sulphur management92



Thomsen IK Hansen JF Kjellerup V & Christensen BT 1997. Effects of
cropping system and rates of nitrogen in animal slurry and mineral fer-
tilizer on nitrate leaching from a sandy loam. Soil Use and Management
9, 53–58.

Till R 2002. Sulphur fertilisers, forage quality and animal production.
Proceedings No. 501. International Fertiliser Society York UK 27 pp.

Ulyatt MJ Thomson DJ Beever DE Evans RT & Haines M 1988. The
digestion of perennial ryegrass (Lolium perenne cv Melle) and white clo-
ver (Trifolium repens cv Blanca) by grazing cattle. British Journal of
Nutrition 60, 137–149.

Unkovich MJ & Pate JS 2000. An appraisal of recent field measurements
of symbiotic N2 fixation by annual legumes. Field Crops Research 65,
211–228.

Unkovich MJ Pate JS & Sanford P 1997. Nitrogen fixation by annual
legumes in Australian Mediterranean agriculture. Australian Journal of
Agricultural Research 48, 267–293.

Van Kessel C & Hartley C 2000. Agricultural management of grain
legumes: has it led to an increase in nitrogen fixation? Field Crops
Research 65, 165–181.

Velthof GL Kuikman PJ & Oenema O 2002. Nitrous oxide emission from
soils amended with crop residues. Nutrient Cycling in Agroecosystems
62, 249–261.

Vinten AJA Castle K & Arah JRM 1996. Field evaluation of models of
denitrification linked to nitrate leaching for aggregated soil. European
Journal of Soil Science 47, 305–317.

Vinther FP & Jensen ES 2000. Estimating legume N2 fixation in
grass-clover mixtures of a grazed organic cropping system using two
N-15 methods. Agriculture Ecosystems and Environment 78,
139–147.

Watson CA Atkinson D Gosling P Jackson LR & Rayns FW 2002. Mana-
ging soil fertility in organic farming systems. Soil Use and Management
18, 239–247.

Walker K & Dawson C 2002. Sulphur fertiliser recommendations in
Europe. Proceedings No. 504. International Fertiliser Society York UK
12 pp.

Waterer JG Vessey JK Stobbe EH & Soper RJ 1994. Yield and symbiotic
nitrogen fixation in a pea–mustard intercrop as influenced by N fertili-
ser additions. Soil Biology and Biochemistry 26, 447–453.

Webster CP & Goulding KWT 1989. Influence of soil carbon content on
denitrification from fallow land during autumn. Journal of the Science
of Food and Agriculture 49, 131–142.

Weier KL Doran JW Power JF & Walters DT 1993. Denitrification and
the dinitrogen/nitrous oxide ratio as affected by soil water, available car-
bon, and nitrate. Soil Science Society of America Journal 57, 66–72.

White PF Nersoyan NK & Christiansen S 1994. Nitrogen cycling in a
semi-arid Mediterranean region: changes in soil N and organic matter
under several crop/livestock production systems. Australian Journal of
Agricultural Research 45, 1293–1307.

Whitehead DC 2000. Nutrient elements in grassland: soil–plant–animal
relationships. CAB International Wallingford UK.

Yan X Akimoto H & O’Hara T 2003. Estimation of nitrous oxide, nitric
oxide and ammonia emissions from croplands in East, Southeast and
South Asia. Global Change Biology 9, 1080–1096.

Zhao FJ McGrath SP Blake-Kalff MMA Link A & Tucker M 2002 Crop
responses to sulphur fertilisation in Europe. Proceedings No. 504, Inter-
national Fertiliser Society York UK 27 pp.

q British Society of Soil Science 2005

A.M. McNeill et al. 93


	Archived at http://orgprints: 
	org/5470: Archived at http://orgprints.org/5470



