577 research outputs found
Mouse models for preeclampsia: disruption of redox-regulated signaling
The concept that oxidative stress contributes to the development of human preeclampsia has never been tested in genetically-defined animal models. Homozygous deletion of catechol-Omethyl transferase (Comt-/-) in pregnant mice leads to human preeclampsia-like symptoms (high
blood pressure, albuminurea and preterm birth) resulting from extensive vasculo-endothelial pathology, primarily at the utero-fetal interface where maternal cardiac output is dramatically increased during pregnancy. Comt converts estradiol to 2-methoxyestradiol 2 (2ME2) which
counters angiogenesis by depleting hypoxia inducible factor-1 alpha (HIF-1 alpha) at late pregnancy. We propose that in wild type (Comt++) pregnant mice, 2ME2 destabilizes HIF-1 alpha by inhibiting mitochondrial superoxide dismutase (MnSOD). Thus, 2ME2 acts as a pro-oxidant, disrupting
redox-regulated signaling which blocks angiogenesis in wild type (WT) animals in physiological pregnancy. Further, we suggest that a lack of this inhibition under normoxic conditions in mutant animals (Comt-/-) stabilises HIF-1 alpha by inactivating prolyl hydroxlases (PHD). We predict that a lack of inhibition of MnSOD, leading to persistent accumulation of HIF-1 alpha, would trigger
inflammatory infiltration and endothelial damage in mutant animals. Critical tests of this hypothesis would be to recreate preeclampsia symptoms by inducing oxidative stress in WT animals or to ameliorate by treating mutant mice with Mn-SOD-catalase mimetics or activators of PHD
Electrically controlled long-distance spin transport through an antiferromagnetic insulator
Spintronics uses spins, the intrinsic angular momentum of electrons, as an
alternative for the electron charge. Its long-term goal is in the development
of beyond-Moore low dissipation technology devices. Recent progress
demonstrated the long-distance transport of spin signals across ferromagnetic
insulators. Antiferromagnetically ordered materials are however the most common
class of magnetic materials with several crucial advantages over ferromagnetic
systems. In contrast to the latter, antiferromagnets exhibit no net magnetic
moment, which renders them stable and impervious to external fields. In
addition, they can be operated at THz frequencies. While fundamentally their
properties bode well for spin transport, previous indirect observations
indicate that spin transmission through antiferromagnets is limited to short
distances of a few nanometers. Here we demonstrate the long-distance, over tens
of micrometers, propagation of spin currents through hematite (\alpha-Fe2O3),
the most common antiferromagnetic iron oxide, exploiting the spin Hall effect
for spin injection. We control the spin current flow by the interfacial
spin-bias and by tuning the antiferromagnetic resonance frequency with an
external magnetic field. This simple antiferromagnetic insulator is shown to
convey spin information parallel to the compensated moment (N\'eel order) over
distances exceeding tens of micrometers. This newly-discovered mechanism
transports spin as efficiently as the net magnetic moments in the best-suited
complex ferromagnets. Our results pave the way to ultra-fast, low-power
antiferromagnet-insulator-based spin-logic devices that operate at room
temperature and in the absence of magnetic fields
Probing the relaxation towards equilibrium in an isolated strongly correlated 1D Bose gas
The problem of how complex quantum systems eventually come to rest lies at
the heart of statistical mechanics. The maximum entropy principle put forward
in 1957 by E. T. Jaynes suggests what quantum states one should expect in
equilibrium but does not hint as to how closed quantum many-body systems
dynamically equilibrate. A number of theoretical and numerical studies
accumulate evidence that under specific conditions quantum many-body models can
relax to a situation that locally or with respect to certain observables
appears as if the entire system had relaxed to a maximum entropy state. In this
work, we report the experimental observation of the non-equilibrium dynamics of
a density wave of ultracold bosonic atoms in an optical lattice in the regime
of strong correlations. Using an optical superlattice, we are able to prepare
the system in a well-known initial state with high fidelity. We then follow the
dynamical evolution of the system in terms of quasi-local densities, currents,
and coherences. Numerical studies based on the time-dependent density-matrix
renormalization group method are in an excellent quantitative agreement with
the experimental data. For very long times, all three local observables show a
fast relaxation to equilibrium values compatible with those expected for a
global maximum entropy state. We find this relaxation of the quasi-local
densities and currents to initially follow a power-law with an exponent being
significantly larger than for free or hardcore bosons. For intermediate times
the system fulfills the promise of being a dynamical quantum simulator, in that
the controlled dynamics runs for longer times than present classical algorithms
based on matrix product states can efficiently keep track of.Comment: 8 pages, 6 figure
Quantum phase transitions of light
Recently, condensed matter and atomic experiments have reached a length-scale
and temperature regime where new quantum collective phenomena emerge. Finding
such physics in systems of photons, however, is problematic, as photons
typically do not interact with each other and can be created or destroyed at
will. Here, we introduce a physical system of photons that exhibits strongly
correlated dynamics on a meso-scale. By adding photons to a two-dimensional
array of coupled optical cavities each containing a single two-level atom in
the photon-blockade regime, we form dressed states, or polaritons, that are
both long-lived and strongly interacting. Our zero temperature results predict
that this photonic system will undergo a characteristic Mott insulator
(excitations localised on each site) to superfluid (excitations delocalised
across the lattice) quantum phase transition. Each cavity's impressive photon
out-coupling potential may lead to actual devices based on these quantum
many-body effects, as well as observable, tunable quantum simulators. We
explicitly show that such phenomena may be observable in micro-machined diamond
containing nitrogen-vacancy colour centres and superconducting microwave
strip-line resonators.Comment: 11 pages, 5 figures (2 in colour
Translation of evidence-based Assistive Technologies into stroke rehabilitation: Users' perceptions of the barriers and opportunities
Background: Assistive Technologies (ATs), defined as "electrical or mechanical devices designed to help people recover movement", demonstrate clinical benefits in upper limb stroke rehabilitation; however translation into clinical practice is poor. Uptake is dependent on a complex relationship between all stakeholders. Our aim was to understand patients', carers' (P&Cs) and healthcare professionals' (HCPs) experience and views of upper limb rehabilitation and ATs, to identify barriers and opportunities critical to the effective translation of ATs into clinical practice. This work was conducted in the UK, which has a state funded healthcare system, but the findings have relevance to all healthcare systems. Methods. Two structurally comparable questionnaires, one for P&Cs and one for HCPs, were designed, piloted and completed anonymously. Wide distribution of the questionnaires provided data from HCPs with experience of stroke rehabilitation and P&Cs who had experience of stroke. Questionnaires were designed based on themes identified from four focus groups held with HCPs and P&Cs and piloted with a sample of HCPs (N = 24) and P&Cs (N = 8). Eight of whom (four HCPs and four P&Cs) had been involved in the development. Results: 292 HCPs and 123 P&Cs questionnaires were analysed. 120 (41%) of HCP and 79 (64%) of P&C respondents had never used ATs. Most views were common to both groups, citing lack of information and access to ATs as the main reasons for not using them. Both HCPs (N = 53 [34%]) and P&C (N = 21 [47%]) cited Functional Electrical Stimulation (FES) as the most frequently used AT. Research evidence was rated by HCPs as the most important factor in the design of an ideal technology, yet ATs they used or prescribed were not supported by research evidence. P&Cs rated ease of set-up and comfort more highly. Conclusion: Key barriers to translation of ATs into clinical practice are lack of knowledge, education, awareness and access. Perceptions about arm rehabilitation post-stroke are similar between HCPs and P&Cs. Based on our findings, improvements in AT design, pragmatic clinical evaluation, better knowledge and awareness and improvement in provision of services will contribute to better and cost-effective upper limb stroke rehabilitation. © 2014 Hughes et al.; licensee BioMed Central Ltd
Terrestrial vegetation redistribution and carbon balance under climate change
BACKGROUND: Dynamic Global Vegetation Models (DGVMs) compute the terrestrial carbon balance as well as the transient spatial distribution of vegetation. We study two scenarios of moderate and strong climate change (2.9 K and 5.3 K temperature increase over present) to investigate the spatial redistribution of major vegetation types and their carbon balance in the year 2100. RESULTS: The world's land vegetation will be more deciduous than at present, and contain about 125 billion tons of additional carbon. While a recession of the boreal forest is simulated in some areas, along with a general expansion to the north, we do not observe a reported collapse of the central Amazonian rain forest. Rather, a decrease of biomass and a change of vegetation type occurs in its northeastern part. The ability of the terrestrial biosphere to sequester carbon from the atmosphere declines strongly in the second half of the 21(st )century. CONCLUSION: Climate change will cause widespread shifts in the distribution of major vegetation functional types on all continents by the year 2100
The Rewiring of Ubiquitination Targets in a Pathogenic Yeast Promotes Metabolic Flexibility, Host Colonization and Virulence
Funding: This work was funded by the European Research Council [http://erc.europa.eu/], AJPB (STRIFE Advanced Grant; C-2009-AdG-249793). The work was also supported by: the Wellcome Trust [www.wellcome.ac.uk], AJPB (080088, 097377); the UK Biotechnology and Biological Research Council [www.bbsrc.ac.uk], AJPB (BB/F00513X/1, BB/K017365/1); the CNPq-Brazil [http://cnpq.br], GMA (Science without Borders fellowship 202976/2014-9); and the National Centre for the Replacement, Refinement and Reduction of Animals in Research [www.nc3rs.org.uk], DMM (NC/K000306/1). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Acknowledgments We thank Dr. Elizabeth Johnson (Mycology Reference Laboratory, Bristol) for providing strains, and the Aberdeen Proteomics facility for the biotyping of S. cerevisiae clinical isolates, and to Euroscarf for providing S. cerevisiae strains and plasmids. We are grateful to our Microscopy Facility in the Institute of Medical Sciences for their expert help with the electron microscopy, and to our friends in the Aberdeen Fungal Group for insightful discussions.Peer reviewedPublisher PD
Benefits and risks of the hormetic effects of dietary isothiocyanates on cancer prevention
The isothiocyanate (ITC) sulforaphane (SFN) was shown at low levels (1-5 µM) to promote cell proliferation to 120-143% of the controls in a number of human cell lines, whilst at high levels (10-40 µM) it inhibited such cell proliferation. Similar dose responses were observed for cell migration, i.e. SFN at 2.5 µM increased cell migration in bladder cancer T24 cells to 128% whilst high levels inhibited cell migration. This hormetic action was also found in an angiogenesis assay where SFN at 2.5 µM promoted endothelial tube formation (118% of the control), whereas at 10-20 µM it caused significant inhibition. The precise mechanism by which SFN influences promotion of cell growth and migration is not known, but probably involves activation of autophagy since an autophagy inhibitor, 3-methyladenine, abolished the effect of SFN on cell migration. Moreover, low doses of SFN offered a protective effect against free-radical mediated cell death, an effect that was enhanced by co-treatment with selenium. These results suggest that SFN may either prevent or promote tumour cell growth depending on the dose and the nature of the target cells. In normal cells, the promotion of cell growth may be of benefit, but in transformed or cancer cells it may be an undesirable risk factor. In summary, ITCs have a biphasic effect on cell growth and migration. The benefits and risks of ITCs are not only determined by the doses, but are affected by interactions with Se and the measured endpoint
Compliance and persistence with osteoporosis medications: A critical review of the literature
It is widely acknowledged that compliance and persistence with oral osteoporosis medications, particularly with bisphosphonates, is poor. Several excellent reviews have been written on compliance and persistence with osteoporosis medications and have discussed improvements seen with extended dosing intervals. This review begins with studies on extended dosing intervals to examine the limitations of administrative claims data. It also looks at compliance and persistence across multiple medical conditions, examining the importance of prescription fulfillment, intentional choice, causation and possible interventions
Shot noise in mesoscopic systems
This is a review of shot noise, the time-dependent fluctuations in the
electrical current due to the discreteness of the electron charge, in small
conductors. The shot-noise power can be smaller than that of a Poisson process
as a result of correlations in the electron transmission imposed by the Pauli
principle. This suppression takes on simple universal values in a symmetric
double-barrier junction (suppression factor 1/2), a disordered metal (factor
1/3), and a chaotic cavity (factor 1/4). Loss of phase coherence has no effect
on this shot-noise suppression, while thermalization of the electrons due to
electron-electron scattering increases the shot noise slightly. Sub-Poissonian
shot noise has been observed experimentally. So far unobserved phenomena
involve the interplay of shot noise with the Aharonov-Bohm effect, Andreev
reflection, and the fractional quantum Hall effect.Comment: 37 pages, Latex, 10 figures (eps). To be published in "Mesoscopic
Electron Transport," edited by L. P. Kouwenhoven, G. Schoen, and L. L. Sohn,
NATO ASI Series E (Kluwer Academic Publishing, Dordrecht
- …