1,204 research outputs found

    X-ray vs. Optical Variations in the Seyfert 1 Nucleus NGC 3516: A Puzzling Disconnectedness

    Full text link
    We present optical broadband (B and R) observations of the Seyfert 1 nucleus NGC 3516, obtained at Wise Observatory from March 1997 to March 2002, contemporaneously with X-ray 2-10 keV measurements with RXTE. With these data we increase the temporal baseline of this dataset to 5 years, more than triple to the coverage we have previously presented for this object. Analysis of the new data does not confirm the 100-day lag of X-ray behind optical variations, tentatively reported in our previous work. Indeed, excluding the first year's data, which drive the previous result, there is no significant correlation at any lag between the X-ray and optical bands. We also find no correlation at any lag between optical flux and various X-ray hardness ratios. We conclude that the close relation observed between the bands during the first year of our program was either a fluke, or perhaps the result of the exceptionally bright state of NGC 3516 in 1997, to which it has yet to return. Reviewing the results of published joint X-ray and UV/optical Seyfert monitoring programs, we speculate that there are at least two components or mechanisms contributing to the X-ray continuum emission up to 10 keV: a soft component that is correlated with UV/optical variations on timescales >1 day, and whose presence can be detected when the source is observed at low enough energies (about 1 keV), is unabsorbed, or is in a sufficiently bright phase; and a hard component whose variations are uncorrelated with the UV/optical.Comment: 9 pages, AJ, in pres

    Soft X-ray spectral variations of the narrow line Seyfert l galaxy Markarian 766

    Get PDF
    The X-ray variability of the narrow-line Seyfert 1 galaxy Markarian 766 is studied using nine ROSAT PSPC data sets. The spectrum is well described by a power law combined with a blackbody (kT ∌ 70 eV) soft excess. Examination of flux ratio changes and variability amplitude in three X-ray bands shows that the power-law component varies continuously on time-scales of ∌ 5000 s and is steeper when it is brighter. In contrast, variability of the soft excess is not detected. Spectral modelling of 31 spectra from different observations and at a range of count rates is also consistent with a picture in which the power law is steeper when it is brighter, and in which the soft-excess component does not vary. The power-law variability can be explained if the power law is produced by variable thermal or non-thermal Comptonization of soft photons. This behaviour is similar to that of Galactic black hole candidates in the low state. The X-ray and multiwavelength properties of Markarian 766 are shown to be very similar to those of other narrow-line Seyfert 1s. This may mean that the rapid X-ray variability seen in other narrow-line Seyfert 1s may also not originate in their strong soft-excess components

    Stability of radiation-pressure dominated disks. I. The dispersion relation for a delayed heating alpha-viscosity prescription

    Get PDF
    We derive and investigate the dispersion relation for accretion disks with retarded or advanced heating. We follow the alpha-prescription but allow for a time offset (\tau) between heating and pressure perturbations, as well as for a diminished response of heating to pressure variations. We study in detail solutions of the dispersion relation for disks with radiation-pressure fraction 1 - \beta . For \tau <0 (delayed heating) the number and sign of real solutions for the growth rate depend on the values of the time lag and the ratio of heating response to pressure perturbations, \xi . If the delay is larger than a critical value (e.g., if \Omega \tau <-125 for \alpha =0.1, \beta =0 and \xi =1) two real solutions exist, which are both negative. These results imply that retarded heating may stabilize radiation-pressure dominated accretion disks.Comment: 11 pages, 10 figures, to be submitted to A&

    Outbursts from IGR J17473-2721

    Full text link
    We have investigated the outbursts of IGR J17473-2721. We analyzed all available observations carried out by RXTE on IGR J17473-2721 during its later outburst and as well all the available SWIFT/BAT data. The flux of the latter outburst rose in ~ one month and then kept roughly constant for the following ~ two months. During this time period, the source was in a low/hard state. The source moved to a high/soft state within the following three days, accompanied by the occurrence of an additional outburst at soft X-rays and the end of the preceding outburst in hard X-rays. During the decay of this soft outburst, the source went back to a low/hard state within 6 days, with a luminosity 4 times lower than the first transition. This shows a full cycle of the hysteresis in transition between the hard and the soft states. The fact that the flux remained roughly constant for ~ two months at times prior to the spectral transition to a high/soft state might be regarded as the result of balancing the evaporation of the inner disk and the inward accretion flow, in a model in which the state transition is determined by the mass flow rate. Such a balance might be broken via an additional mass flow accreting onto the inner disk, which lightens the extra soft outburst and causes the state transition. However, the possibility of an origin of the emission from the jet during this time period cannot be excluded. The spectral analysis suggests an inclined XRB system for IGR J17473-2721. Such a long-lived preceding low/hard state makes IGR J17473-2721 resemble the behavior of outbursts seen in black hole X-ray binaries like GX 339-4.Comment: A&A in pres

    High Energy Break and Reflection Features in the Seyfert Galaxy MCG+8-11-11

    Get PDF
    We present the results from ASCA and OSSE simultaneous observations of the Seyfert 1.5 galaxy MCG+8-11-11 performed in August-September 1995. The ASCA observations indicate a modest flux increase (20%) in 3 days, possibly correlated to a softening of the 0.6-9 keV spectrum. The spectrum is well described by a hard power law (Gamma=1.64) absorbed by a column density slightly larger than the Galactic value, with an iron line at 6.4 keV of EW=400 eV. The simultaneous OSSE data are characterized by a much softer power law with photon index Gamma=3.0, strongly suggesting the presence of a spectral break in the hard X/soft gamma-ray band. A joint fit to OSSE and ASCA data clearly shows an exponential cut-off at about 300 keV, and strong reflection component. MCG+8-11-11 features a spectral break in the underlying continuum unambiguously. This, together with the inferred low compactness of this source, favours thermal or quasi-thermal electron Comptonization in a structured Corona as the leading process of high energy radiation production.Comment: 13 pages, + 4 figure.ps AAS LateX [11pt,aasms4]{article} To be published in ApJ, Main Journa

    Joint spectral-timing modelling of the hard lags in GX 339-4: constraints on reflection models

    Full text link
    The X-ray variations of hard state black hole X-ray binaries above 2 keV show 'hard lags', in that the variations at harder energies follow variations at softer energies, with a time-lag \tau depending on frequency \nu approximately as \tau \propto \nu^{-0.7}. Several models have so far been proposed to explain this time delay, including fluctuations propagating through an accretion flow, spectral variations during coronal flares, Comptonisation in the extended hot corona or a jet, or time-delays due to large-scale reflection from the accretion disc. In principle these models can be used to predict the shape of the energy spectrum as well as the frequency-dependence of the time-lags, through the construction of energy-dependent response functions which map the emission as a function of time-delay in the system. Here we use this approach to test a simple reflection model for the frequency-dependent lags seen in the hard state of GX 339-4, by simultaneously fitting the model to the frequency-dependent lags and energy spectrum measured by XMM-Newton in 2004 and 2009. Our model cannot simultaneously fit both the lag and spectral data, since the relatively large lags require an extremely flared disc which subtends a large solid angle to the continuum at large radii, in disagreement with the observed Fe K\alpha emission. Therefore, we consider it more likely that the lags > 2 keV are caused by propagation effects in the accretion flow, possibly related to the accretion disc fluctuations which have been observed previously.Comment: 11 pages, 11 figures. Accepted for publication in MNRA

    An alternative model of the magnetic cataclysmic variable V1432 Aquilae (=RX J1940.1-1025)

    Get PDF
    V1432 Aql is currently considered to be an asynchronous AM Her type system, with an orbital period of 12116.3 s and a spin period of 12150 s. I present an alternative model in which V1432 Aql is an intermediate polar with disk overflow or diskless accretion geometry, with a spin period near 4040 s. I argue that published data are insufficient to distinguish between the two models; instead, I provide a series of predictions of the two models that can be tested against future observations.Comment: 10 pages LaTeX including 3 Postscript Figures, to be published in Ap

    Swift observations of the 2006 outburst of the recurrent nova RS Ophiuchi: I. Early X-ray emission from the shocked ejecta and red giant wind

    Get PDF
    RS Ophiuchi began its latest outburst on 2006 February 12. Previous outbursts have indicated that high velocity ejecta interact with a pre-existing red giant wind, setting up shock systems analogous to those seen in Supernova Remnants. However, in the previous outburst in 1985, X-ray observations did not commence until 55 days after the initial explosion. Here we report on Swift observations covering the first month of the 2006 outburst with the Burst Alert (BAT) and X-ray Telescope (XRT) instruments. RS Oph was clearly detected in the BAT 14-25 keV band from t=0 to t∌6t\sim6 days. XRT observationsfrom 0.3-10 keV, started at 3.17 days after outburst. The rapidly evolving XRT spectra clearly show the presence of both line and continuum emission which can be fitted by thermal emission from hot gas whose characteristic temperature, overlying absorbing column, [NH]W[N_H]_W, and resulting unabsorbed total flux decline monotonically after the first few days. Derived shock velocities are in good agreement with those found from observations at other wavelengths. Similarly, [NH]W[N_H]_W is in accord with that expected from the red giant wind ahead of the forward shock. We confirm the basic models of the 1985 outburst and conclude that standard Phase I remnant evolution terminated by t∌10t\sim10 days and the remnant then rapidly evolved to display behaviour characteristic of Phase III. Around t=26 days however, a new, luminous and highly variable soft X-ray source began to appear whose origin will be explored in a subsequent paper.Comment: 20 pages, 4 figures (2 updated), accepted by Ap

    Chandra Observations of the Dwarf Nova WX Hyi in Quiescence

    Full text link
    We report Chandra observations of the dwarf nova WX Hyi in quiescence. The X-ray spectrum displays strong and narrow emission lines of N, O, Mg, Ne, Si, S and Fe. The various ionization states implied by the lines suggest that the emission is produced within a flow spanning a wide temperature range, from T ~ 10^6 K to T >~ 10^8 K. Line diagnostics indicate that most of the radiation originates from a very dense region, with n ~ 10^{13}-10^{14} cm^{-3}. The Chandra data allow the first tests of specific models proposed in the literature for the X-ray emission in quiescent dwarf novae. We have computed the spectra for a set of models ranging from hot boundary layers, to hot settling flows solutions, to X-ray emitting coronae. WX Hyi differs from other dwarf novae observed at minimum in having much stronger low temperature lines, which prove difficult to fit with existing models, and possibly a very strong, broad O VII line, perhaps produced in a wind moving at a few x 10^3 km/s. The accretion rate inferred from the X-rays is lower than the value inferred from the UV. The presence of high-velocity mass ejection could account for this discrepancy while at the same time explaining the presence of the broad O VII line. If this interpretation is correct, it would provide the first detection of a wind from a dwarf nova in quiescence.Comment: accepted to ApJ; 19 pages, 3 figures, 1 tabl
    • 

    corecore