44 research outputs found

    Environmental controls, oceanography and population dynamics of pathogens and harmful algal blooms: connecting sources to human exposure

    Get PDF
    © 2008 Author et al. This is an open access article distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Environmental Health 7 (2008): S5, doi:10.1186/1476-069X-7-S2-S5.Coupled physical-biological models are capable of linking the complex interactions between environmental factors and physical hydrodynamics to simulate the growth, toxicity and transport of infectious pathogens and harmful algal blooms (HABs). Such simulations can be used to assess and predict the impact of pathogens and HABs on human health. Given the widespread and increasing reliance of coastal communities on aquatic systems for drinking water, seafood and recreation, such predictions are critical for making informed resource management decisions. Here we identify three challenges to making this connection between pathogens/HABs and human health: predicting concentrations and toxicity; identifying the spatial and temporal scales of population and ecosystem interactions; and applying the understanding of population dynamics of pathogens/HABs to management strategies. We elaborate on the need to meet each of these challenges, describe how modeling approaches can be used and discuss strategies for moving forward in addressing these challenges.The authors acknowledge the financial support for the NSF/NIEHS and NOAA Centers for Oceans and Human Healt

    Atmospheric oxygen regulation at low Proterozoic levels by incomplete oxidative weathering of sedimentary organic carbon

    Get PDF
    It is unclear why atmospheric oxygen remained trapped at low levels for more than 1.5 billion years following the Paleoproterozoic Great Oxidation Event. Here, we use models for erosion, weathering and biogeochemical cycling to show that this can be explained by the tectonic recycling of previously accumulated sedimentary organic carbon, combined with the oxygen sensitivity of oxidative weathering. Our results indicate a strong negative feedback regime when atmospheric oxygen concentration is of order pO2∼0.1 PAL (present atmospheric level), but that stability is lost at pO2<0.01 PAL. Within these limits, the carbonate carbon isotope (δ13C) record becomes insensitive to changes in organic carbon burial rate, due to counterbalancing changes in the weathering of isotopically light organic carbon. This can explain the lack of secular trend in the Precambrian δ13C record, and reopens the possibility that increased biological productivity and resultant organic carbon burial drove the Great Oxidation Event

    Intimate partner violence: a study in men and women from six European countries

    Get PDF
    OBJECTIVES: We aimed to assess intimate partner violence (IPV) among men and women from six cities in six European countries. METHODS: Four IPV types were measured in a population-based multicentre study of adults (18-64 years; n = 3,496). Sex- and city-differences in past year prevalence were examined considering victims, perpetrators or both and considering violent acts' severity and repetition. RESULTS: Male victimization of psychological aggression ranged from 48.8 % (Porto) to 71.8 % (Athens) and female victimization from 46.4 % (Budapest) to 70.5 % (Athens). Male and female victimization of sexual coercion ranged from 5.4 and 8.9 %, respectively, in Budapest to 27.1 and 25.3 % in Stuttgart. Male and female victims of physical assault ranged from 9.7 and 8.5 %, respectively, in Porto, to 31.2 and 23.1 % in Athens. Male victims of injury were 2.7 % in Östersund and 6.3 % in London and female victims were 1.4 % in Östersund and 8.5 % in Stuttgart. IPV differed significantly across cities (p < 0.05). Men and women predominantly experienced IPV as both victims and perpetrators with few significant sex-differences within cities. CONCLUSIONS: Results support the need to consider men and women as both potential victims and perpetrators when approaching IPV

    What makes a planet habitable?

    No full text
    This work reviews factors which are important for the evolution of habitable Earth-like planets such as the effects of the host star dependent radiation and particle fluxes on the evolution of atmospheres and initial water inventories. We discuss the geodynamical and geophysical environments which are necessary for planets where plate tectonics remain active over geological time scales and for planets which evolve to one-plate planets. The discoveries of methane–ethane surface lakes on Saturn’s large moon Titan, subsurface water oceans or reservoirs inside the moons of Solar System gas giants such as Europa, Ganymede, Titan and Enceladus and more than 335 exoplanets, indicate that the classical definition of the habitable zone concept neglects more exotic habitats and may fail to be adequate for stars which are different from our Sun. A classification of four habitat types is proposed. Class I habitats represent bodies on which stellar and geophysical conditions allow Earth-analog planets to evolve so that complex multi-cellular life forms may originate. Class II habitats includes bodies on which life may evolve but due to stellar and geophysical conditions that are different from the class I habitats, the planets rather evolve toward Venus- or Mars-type worlds where complex life-forms may not develop. Class III habitats are planetary bodies where subsurface water oceans exist which interact directly with a silicate-rich core, while class IV habitats have liquid water layers between two ice layers, or liquids above ice. Furthermore, we discuss from the present viewpoint how life may have originated on early Earth, the possibilities that life may evolve on such Earth-like bodies and how future space missions may discover manifestations of extraterrestrial life
    corecore