8,165 research outputs found

    Wandering Black Holes in Bright Disk Galaxy Halos

    Full text link
    We perform SPH+N-body cosmological simulations of massive disk galaxies, including a formalism for black hole seed formation and growth, and find that satellite galaxies containing supermassive black hole seeds are often stripped as they merge with the primary galaxy. These events naturally create a population of "wandering" black holes that are the remnants of stripped satellite cores; galaxies like the Milky Way may host 5 -- 15 of these objects within their halos. The satellites that harbor black hole seeds are comparable to Local Group dwarf galaxies such as the Small and Large Magellanic Clouds; these galaxies are promising candidates to host nearby intermediate mass black holes. Provided that these wandering black holes retain a gaseous accretion disk from their host dwarf galaxy, they give a physical explanation for the origin and observed properties of some recently discovered off-nuclear ultraluminous X-ray sources such as HLX-1.Comment: Accepted for publication in ApJ Letter

    Dehydration and ionic conductance quantization in nanopores

    Full text link
    There has been tremendous experimental progress in the last decade in identifying the structure and function of biological pores (ion channels) and fabricating synthetic pores. Despite this progress, many questions still remain about the mechanisms and universal features of ionic transport in these systems. In this paper, we examine the use of nanopores to probe ion transport and to construct functional nanoscale devices. Specifically, we focus on the newly predicted phenomenon of quantized ionic conductance in nanopores as a function of the effective pore radius - a prediction that yields a particularly transparent way to probe the contribution of dehydration to ionic transport. We study the role of ionic species in the formation of hydration layers inside and outside of pores. We find that the ion type plays only a minor role in the radial positions of the predicted steps in the ion conductance. However, ions with higher valency form stronger hydration shells, and thus, provide even more pronounced, and therefore, more easily detected, drops in the ionic current. Measuring this phenomenon directly, or from the resulting noise, with synthetic nanopores would provide evidence of the deviation from macroscopic (continuum) dielectric behavior due to microscopic features at the nanoscale and may shed light on the behavior of ions in more complex biological channels.Comment: 13 pages, 10 figure

    Restricted Supergauge invariance, N=2 Coadjoint Orbit and N=2 Quantum Supergravity

    Full text link
    It is shown that the N=2 superconformal transformations are restricted N=1 supergauge transformations of a supergauge theory with Osp(2,2) as a gauge group. Based on this result, a canonical derivation of the Osp(2,2) current algebra in the superchiral gauge formulation of N=2 supergravity is presented.Comment: 20 page

    True and apparent scaling: the proximity of the markov- switching multifractal model to long-range dependence

    Get PDF
    In this paper, we consider daily financial data of a collection of different stock market indices, exchange rates, and interest rates, and we analyze their multi-scaling properties by estimating a simple specification of the Markov-switching multifractal model (MSM). In order to see how well the estimated models capture the temporal dependence of the data, we estimate and compare the scaling exponents H(q) (for q = 1, 2) for both empirical data and simulated data of the estimated MSM models. In most cases the multifractal model appears to generate ‘apparent’ long memory in agreement with the empirical scaling laws

    Flexibility defines structure in crystals of amphiphilic DNA nanostars.

    Get PDF
    DNA nanostructures with programmable shape and interactions can be used as building blocks for the self-assembly of crystalline materials with prescribed nanoscale features, holding a vast technological potential. Structural rigidity and bond directionality have been recognised as key design features for DNA motifs to sustain long-range order in 3D, but the practical challenges associated with prescribing building-block geometry with sufficient accuracy have limited the variety of available designs. We have recently introduced a novel platform for the one-pot preparation of crystalline DNA frameworks supported by a combination of Watson-Crick base pairing and hydrophobic forces (Brady et al 2017 Nano Lett. 17 3276-81). Here we use small angle x-ray scattering and coarse-grained molecular simulations to demonstrate that, as opposed to available all-DNA approaches, amphiphilic motifs do not rely on structural rigidity to support long-range order. Instead, the flexibility of amphiphilic DNA building-blocks is a crucial feature for successful crystallisation

    Black Hole growth and AGN obscuration by instability-driven inflows in high-redshift disk galaxies fed by cold streams

    Full text link
    Disk galaxies at high redshift have been predicted to maintain high gas surface densities due to continuous feeding by intense cold streams leading to violent gravitational instability, transient features and giant clumps. Gravitational torques between the perturbations drive angular momentum out and mass in, and the inflow provides the energy for keeping strong turbulence. We use analytic estimates of the inflow for a self-regulated unstable disk at a Toomre stability parameter Q~1, and isolated galaxy simulations capable of resolving the nuclear inflow down to the central parsec. We predict an average inflow rate ~10 Msun/yr through the disk of a 10^11 Msun galaxy, with conditions representative of z~2 stream-fed disks. The inflow rate scales with disk mass and (1+z)^{3/2}. It includes clump migration and inflow of the smoother component, valid even if clumps disrupt. This inflow grows the bulge, while only a fraction ~ 10^-3 of it needs to accrete onto a central black hole (BH), in order to obey the observed BH-bulge relation. A galaxy of 10^11 Msun at z~2 is expected to host a BH of ~10^8 Msun, accreting on average with moderate sub-Eddington luminosity L_X ~ 10^42-43 erg/s, accompanied by brighter episodes when dense clumps coalesce. We note that in rare massive galaxies at z~6, the same process may feed 10^9 Msun BH at the Eddington rate. High central gas column densities can severely obscure AGN in high-redshift disks, possibly hindering their detection in deep X-ray surveys.Comment: ApJL in pres

    A rumble in the dark: signatures of self-interacting dark matter in supermassive black hole dynamics and galaxy density profiles

    Get PDF
    We explore for the first time the effect of self-interacting dark matter (SIDM) on the dark matter (DM) and baryonic distribution in massive galaxies formed in hydrodynamical cosmological simulations, including explicit baryonic physics treatment. A novel implementation of supermassive black hole (SMBH) formation and evolution is used, as in Tremmel et al., allowing us to explicitly follow the SMBH dynamics at the centre of galaxies. A high SIDM constant cross-section is chosen, σ = 10 cm2gr−1, to amplify differences from CDM models. Milky Way-like galaxies form a shallower DM density profile in SIDM than they do in cold dark matter (CDM), with differences already at 20 kpc scales. This demonstrates that even for the most massive spirals, the effect of SIDM dominates over the adiabatic contraction due to baryons. Strikingly, the dynamics of SMBHs differs in the SIDM and reference CDM case. SMBHs in massive spirals have sunk to the centre of their host galaxy in both the SIDM and CDM run, while in less massive galaxies about 80 per cent of the SMBH population is off-centred in the SIDM case, as opposed to the CDM case in which ∼ 90 per cent of SMBHs have reached their host’s centre. SMBHs are found as far as ∼9 kpc away from the centre of their host SIDM galaxy. This difference is due to the increased dynamical friction time-scale caused by the lower DM density in SIDM galaxies compared to CDM, resulting in core stalling. This pilot work highlights the importance of simulating in a full hydrodynamical context different DM models combined to the SMBH physics to study their influence on galaxy formation

    N=4 Twisted Superspace from Dirac-Kahler Twist and Off-shell SUSY Invariant Actions in Four Dimensions

    Full text link
    We propose N=4 twisted superspace formalism in four dimensions by introducing Dirac-Kahler twist. In addition to the BRST charge as a scalar counter part of twisted supercharge we find vector and tensor twisted supercharges. By introducing twisted chiral superfield we explicitly construct off-shell twisted N=4 SUSY invariant action. We can propose variety of supergauge invariant actions by introducing twisted vector superfield. We may, however, need to find further constraints to identify twisted N=4 super Yang-Mills action. We propose a superconnection formalism of twisted superspace where constraints play a crucial role. It turns out that N=4 superalgebra of Dirac-Kahler twist can be decomposed into N=2 sectors. We can then construct twisted N=2 super Yang-Mills actions by the superconnection formalism of twisted superspace in two and four dimensions.Comment: 62page
    corecore