There has been tremendous experimental progress in the last decade in
identifying the structure and function of biological pores (ion channels) and
fabricating synthetic pores. Despite this progress, many questions still remain
about the mechanisms and universal features of ionic transport in these
systems. In this paper, we examine the use of nanopores to probe ion transport
and to construct functional nanoscale devices. Specifically, we focus on the
newly predicted phenomenon of quantized ionic conductance in nanopores as a
function of the effective pore radius - a prediction that yields a particularly
transparent way to probe the contribution of dehydration to ionic transport. We
study the role of ionic species in the formation of hydration layers inside and
outside of pores. We find that the ion type plays only a minor role in the
radial positions of the predicted steps in the ion conductance. However, ions
with higher valency form stronger hydration shells, and thus, provide even more
pronounced, and therefore, more easily detected, drops in the ionic current.
Measuring this phenomenon directly, or from the resulting noise, with synthetic
nanopores would provide evidence of the deviation from macroscopic (continuum)
dielectric behavior due to microscopic features at the nanoscale and may shed
light on the behavior of ions in more complex biological channels.Comment: 13 pages, 10 figure