35 research outputs found

    Improved functionalization of oleic acid-coated iron oxide nanoparticles for biomedical applications

    Get PDF
    Superparamagnetic iron oxide nanoparticles can providemultiple benefits for biomedical applications in aqueous environments such asmagnetic separation or magnetic resonance imaging. To increase the colloidal stability and allow subsequent reactions, the introduction of hydrophilic functional groups onto the particles’ surface is essential. During this process, the original coating is exchanged by preferably covalently bonded ligands such as trialkoxysilanes. The duration of the silane exchange reaction, which commonly takes more than 24 h, is an important drawback for this approach. In this paper, we present a novel method, which introduces ultrasonication as an energy source to dramatically accelerate this process, resulting in high-quality waterdispersible nanoparticles around 10 nmin size. To prove the generic character, different functional groups were introduced on the surface including polyethylene glycol chains, carboxylic acid, amine, and thiol groups. Their colloidal stability in various aqueous buffer solutions as well as human plasma and serum was investigated to allow implementation in biomedical and sensing applications.status: publishe

    Epoxidation of Light Olefin Mixtures with Hydrogen Peroxide on TS-1 Catalyst

    No full text
    The direct epoxidation of mixed ethene and propene feedstocks using hydrogen peroxide over a titanium silicalite (TS-1) catalyst was investigated within a continuous trickle bed reactor operating in laboratory scale. Methanol was employed as the reaction solvent. This study aimed to streamline the epoxidation process by obviating the need for prior separation of alkenes, thereby enhancing process efficiency. An extensive array of operational parameters was explored in a trickle bed reactor, encompassing experimental parameters such as temperature, total pressure, hydrogen peroxide concentration, liquid flow rate, and gas composition. In contrast to prior investigations involving separate ethene and propene epoxidation, this study revealed a reduction in epoxide selectivity. The principal by-products observed were methoxy species, formed through the interaction between the epoxide and methanol, resulting in a ring-opening reaction. The influence of water on this ring-opening process was negligible. Notably, the tunability of the system was demonstrated, highlighting low temperature and elevated partial ethene pressure as pivotal factors for augmentingthe epoxide selectivity. The findings suggest that binary olefin mixtures exhibit diminished selectivity but improved stability. This behavior is potentially linked to the olefin solubility in methanol, or alterations in the surface species concentrations, typically associated with catalyst activity variations. These insights offer a valuable foundation for understanding and optimizing the direct epoxidation of mixed ethene and propene feedstock. Graphical Abstract: [Figure not available: see fulltext.]</p

    Continuous Liquid-Phase Epoxidation of Ethylene with Hydrogen Peroxide on a Titanium-Silicate Catalyst

    No full text
    Ethylene epoxidation with hydrogen peroxide was studied in a laboratory-scale trickle bed reactor under a broad range of experimental conditions (15-80 °C, 2.5-8.5 bar) utilizing a commercial titanium-silicate catalyst (TS-1). The catalyst was very stable and selective over 150 h time-on-stream. The main reaction product was ethylene oxide, while 2-methoxyethanol and ethylene glycol were observed as kinetic byproducts. In most of the experiments, ethylene glycol was not detected at all. An increase in temperature and pressure affected negatively the ethylene oxide selectivity, while an increase in the hydrogen peroxide concentration improved both the ethylene oxide selectivity and ethylene conversion. Ethylene epoxidation was comparable with propylene epoxidation, displaying, however, important differences in activity and selectivity, which were attributed to the partial pressures studied in the present work. It was demonstrated that TS-1 is a very selective and active catalyst for the selective epoxidation of ethylene with hydrogen peroxide
    corecore