157 research outputs found
Revealing histological and morphological features of female reproductive system in tree shrew (Tupaia belangeri)
The tree shrew has been used as a primate animal model in neuroscience studies but it has only rarely been employed in the study of reproductive systems. This is mainly because we know very little about the histological features of reproductive organs of the tree shrew. In this study, we have systematically analyzed the histology of reproductive organs of tree shrew, in comparison with human organs. The uterus of female tree shrew is uterus biomes unicolis, which is connected with an enveloped ovary through a thin fallopian tube. Histologically, the fallopian tube consists of folded mucosa, muscularis and serosa. Like other mammalian animals, the different developmental stages (primordial, primary, secondary and Graafian follicles) of ovarian follicles including inner oocyte and outer granulosa cells are embedded in the cortex. The luminal endometrium, middle muscular myometrium and serosa constitute the wall of uterus of tree shrew. The uterine endometrium contains simple columnar ciliated cells and goblet cells, and there are rich uterine glands in underlying stroma. Furthermore, these glands of tree shrew are round and smaller during anestrus, and become much longer when they are in estrus. The uterine endometrium in younger animals was less developed when compared to a mature tree shrew. Compared to human uterine endometrium, the histological features of tree shrew are very similar, indicating that it could potentially be good primate animal model for studying the diseases in reproductive system
What Will Happen If We Do Nothing To Control Trachoma: Health Expectancies for Blinding Trachoma in Southern Sudan
Summary measures of population health attempt to express disease burden in terms of a common “currency” and are useful in establishing public health priorities. Disability adjusted life years (DALYs), a health gap measure, have previously been used to estimate burden due to trachoma; however, their methods and results have limitations. This study demonstrates the application of the health expectancies to estimate burden due to trachoma. The study illustrates the future burden associated with doing nothing to control trachoma in Southern Sudan: a substantial proportion of remaining life expectancy spent with trichiasis and low vision or blindness for both men and women, with a disproportionate burden falling on women. The results presented are intuitively meaningful for policy makers and a non-technical audience and compare favourably with other indicators such as mortality and incidence rates or DALYs, which are not generally easily understood. Unless action is taken by further delivery of trachoma control interventions, then populations in Southern Sudan can expect to spend a substantial proportion of their life with low vision or blindness due to trachoma
The genomes of two key bumblebee species with primitive eusocial organization
Background: The shift from solitary to social behavior is one of the major evolutionary transitions. Primitively eusocial bumblebees are uniquely placed to illuminate the evolution of highly eusocial insect societies. Bumblebees are also invaluable natural and agricultural pollinators, and there is widespread concern over recent population declines in some species. High-quality genomic data will inform key aspects of bumblebee biology, including susceptibility to implicated population viability threats. Results: We report the high quality draft genome sequences of Bombus terrestris and Bombus impatiens, two ecologically dominant bumblebees and widely utilized study species. Comparing these new genomes to those of the highly eusocial honeybee Apis mellifera and other Hymenoptera, we identify deeply conserved similarities, as well as novelties key to the biology of these organisms. Some honeybee genome features thought to underpin advanced eusociality are also present in bumblebees, indicating an earlier evolution in the bee lineage. Xenobiotic detoxification and immune genes are similarly depauperate in bumblebees and honeybees, and multiple categories of genes linked to social organization, including development and behavior, show high conservation. Key differences identified include a bias in bumblebee chemoreception towards gustation from olfaction, and striking differences in microRNAs, potentially responsible for gene regulation underlying social and other traits. Conclusions: These two bumblebee genomes provide a foundation for post-genomic research on these key pollinators and insect societies. Overall, gene repertoires suggest that the route to advanced eusociality in bees was mediated by many small changes in many genes and processes, and not by notable expansion or depauperation
Biophysical Assessment of Single Cell Cytotoxicity: Diesel Exhaust Particle-Treated Human Aortic Endothelial Cells
Exposure to diesel exhaust particles (DEPs), a major source of traffic-related air pollution, has become a serious health concern due to its adverse influences on human health including cardiovascular and respiratory disorders. To elucidate the relationship between biophysical properties (cell topography, cytoskeleton organizations, and cell mechanics) and functions of endothelial cells exposed to DEPs, atomic force microscope (AFM) was applied to analyze the toxic effects of DEPs on a model cell line from human aortic endothelial cells (HAECs). Fluorescence microscopy and flow cytometry were also applied to further explore DEP-induced cytotoxicity in HAECs. Results revealed that DEPs could negatively impair cell viability and alter membrane nanostructures and cytoskeleton components in a dosage- and a time-dependent manner; and analyses suggested that DEPs-induced hyperpolarization in HAECs appeared in a time-dependent manner, implying DEP treatment would lead to vasodilation, which could be supported by down-regulation of cell biophysical properties (e.g., cell elasticity). These findings are consistent with the conclusion that DEP exposure triggers important biochemical and biophysical changes that would negatively impact the pathological development of cardiovascular diseases. For example, DEP intervention would be one cause of vasodilation, which will expand understanding of biophysical aspects associated with DEP cytotoxicity in HAECs
Tissue sparing surgery in knee reconstruction: unicompartmental (UKA), patellofemoral (PFA), UKA + PFA, bi-unicompartmental (Bi-UKA) arthroplasties
Recently mini-invasive joint replacement has become one of the hottest topics in the orthopaedic world. However, these terms have been improperly misunderstood as a “key-hole” surgery where traditional components are implanted with shorter surgical approaches, with few benefits and several possible dangers. Small implants as unicompartmental knee prostheses, patellofemoral prostheses and bi-unicompartmental knee prostheses might represent real less invasive procedures: Tissue sparing surgery, the Italian way to minimally invasive surgery (MIS). According to their experience the authors go through this real tissue sparing surgery not limited only to a small incision, but where the surgeons can respect the physiological joint biomechanics
Copy number variants in the sheep genome detected using multiple approaches
BACKGROUND: Copy number variants (CNVs) are a type of polymorphism found to underlie phenotypic variation, both in humans and livestock. Most surveys of CNV in livestock have been conducted in the cattle genome, and often utilise only a single approach for the detection of copy number differences. Here we performed a study of CNV in sheep, using multiple methods to identify and characterise copy number changes. Comprehensive information from small pedigrees (trios) was collected using multiple platforms (array CGH, SNP chip and whole genome sequence data), with these data then analysed via multiple approaches to identify and verify CNVs. RESULTS: In total, 3,488 autosomal CNV regions (CNVRs) were identified in this study, which substantially builds on an initial survey of the sheep genome that identified 135 CNVRs. The average length of the identified CNVRs was 19 kb (range of 1 kb to 3.6 Mb), with shorter CNVRs being more frequent than longer CNVRs. The total length of all CNVRs was 67.6Mbps, which equates to 2.7 % of the sheep autosomes. For individuals this value ranged from 0.24 to 0.55 %, and the majority of CNVRs were identified in single animals. Rather than being uniformly distributed throughout the genome, CNVRs tended to be clustered. Application of three independent approaches for CNVR detection facilitated a comparison of validation rates. CNVs identified on the Roche-NimbleGen 2.1M CGH array generally had low validation rates with lower density arrays, while whole genome sequence data had the highest validation rate (>60 %). CONCLUSIONS: This study represents the first comprehensive survey of the distribution, prevalence and characteristics of CNVR in sheep. Multiple approaches were used to detect CNV regions and it appears that the best method for verifying CNVR on a large scale involves using a combination of detection methodologies. The characteristics of the 3,488 autosomal CNV regions identified in this study are comparable to other CNV regions reported in the literature and provide a valuable and sizeable addition to the small subset of published sheep CNVs. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12864-016-2754-7) contains supplementary material, which is available to authorized users
The role of SPARC in extracellular matrix assembly
SPARC is a collagen-binding matricellular protein. Expression of SPARC in adult tissues is frequently associated with excessive deposition of collagen and SPARC-null mice fail to generate a robust fibrotic response to a variety of stimuli. This review summarizes recent advancements in the characterization of the binding of SPARC to collagens and describes the results of studies that implicate a function for SPARC in the regulation of the assembly of basal lamina and fibrillar collagen in the ECM. Potential cellular mechanisms that underlie SPARC activity in ECM deposition are also explored
High mutation rates explain low population genetic divergence at copy-number-variable loci in Homo sapiens
Copy-number-variable (CNV) loci differ from single nucleotide polymorphic (SNP) sites in size, mutation rate, and mechanisms of maintenance in natural populations. It is therefore hypothesized that population genetic divergence at CNV loci will differ from that found at SNP sites. Here, we test this hypothesis by analysing 856 CNV loci from the genomes of 1184 healthy individuals from 11 HapMap populations with a wide range of ancestry. The results show that population genetic divergence at the CNV loci is generally more than three times lower than at genome-wide SNP sites. Populations generally exhibit very small genetic divergence (G(st) = 0.05 ± 0.049). The smallest divergence is among African populations (G(st) = 0.0081 ± 0.0025), with increased divergence among non-African populations (G(st) = 0.0217 ± 0.0109) and then among African and non-African populations (G(st) = 0.0324 ± 0.0064). Genetic diversity is high in African populations (~0.13), low in Asian populations (~0.11), and intermediate in the remaining 11 populations. Few significant linkage disequilibria (LDs) occur between the genome-wide CNV loci. Patterns of gametic and zygotic LDs indicate the absence of epistasis among CNV loci. Mutation rate is about twice as large as the migration rate in the non-African populations, suggesting that the high mutation rates play dominant roles in producing the low population genetic divergence at CNV loci
Drosophila Duplication Hotspots Are Associated with Late-Replicating Regions of the Genome
Duplications play a significant role in both extremes of the phenotypic spectrum of newly arising mutations: they can have severe deleterious effects (e.g. duplications underlie a variety of diseases) but can also be highly advantageous. The phenotypic potential of newly arisen duplications has stimulated wide interest in both the mutational and selective processes shaping these variants in the genome. Here we take advantage of the Drosophila simulans–Drosophila melanogaster genetic system to further our understanding of both processes. Regarding mutational processes, the study of two closely related species allows investigation of the potential existence of shared duplication hotspots, and the similarities and differences between the two genomes can be used to dissect its underlying causes. Regarding selection, the difference in the effective population size between the two species can be leveraged to ask questions about the strength of selection acting on different classes of duplications. In this study, we conducted a survey of duplication polymorphisms in 14 different lines of D. simulans using tiling microarrays and combined it with an analogous survey for the D. melanogaster genome. By integrating the two datasets, we identified duplication hotspots conserved between the two species. However, unlike the duplication hotspots identified in mammalian genomes, Drosophila duplication hotspots are not associated with sequences of high sequence identity capable of mediating non-allelic homologous recombination. Instead, Drosophila duplication hotspots are associated with late-replicating regions of the genome, suggesting a link between DNA replication and duplication rates. We also found evidence supporting a higher effectiveness of selection on duplications in D. simulans than in D. melanogaster. This is also true for duplications segregating at high frequency, where we find evidence in D. simulans that a sizeable fraction of these mutations is being driven to fixation by positive selection
Detection of copy number variations in rice using array-based comparative genomic hybridization
<p>Abstract</p> <p>Background</p> <p>Copy number variations (CNVs) can create new genes, change gene dosage, reshape gene structures, and modify elements regulating gene expression. As with all types of genetic variation, CNVs may influence phenotypic variation and gene expression. CNVs are thus considered major sources of genetic variation. Little is known, however, about their contribution to genetic variation in rice.</p> <p>Results</p> <p>To detect CNVs, we used a set of NimbleGen whole-genome comparative genomic hybridization arrays containing 718,256 oligonucleotide probes with a median probe spacing of 500 bp. We compiled a high-resolution map of CNVs in the rice genome, showing 641 CNVs between the genomes of the rice cultivars 'Nipponbare' (from <it>O. sativa </it>ssp. <it>japonica</it>) and 'Guang-lu-ai 4' (from <it>O. sativa </it>ssp. <it>indica</it>). The CNVs identified vary in size from 1.1 kb to 180.7 kb, and encompass approximately 7.6 Mb of the rice genome. The largest regions showing copy gain and loss are of 37.4 kb on chromosome 4, and 180.7 kb on chromosome 8. In addition, 85 DNA segments were identified, including some genic sequences. Contracted genes greatly outnumbered duplicated ones. Many of the contracted genes corresponded to either the same genes or genes involved in the same biological processes; this was also the case for genes involved in disease and defense.</p> <p>Conclusion</p> <p>We detected CNVs in rice by array-based comparative genomic hybridization. These CNVs contain known genes. Further discussion of CNVs is important, as they are linked to variation among rice varieties, and are likely to contribute to subspecific characteristics.</p
- …