607 research outputs found

    Evidence for Solar Neutrino Flux Variability and its Implications

    Full text link
    Althogh KamLAND apparently rules out Resonant-Spin-Flavor-Precession (RSFP) as an explanation of the solar neutrino deficit, the solar neutrino fluxes in the Cl and Ga experiments appear to vary with solar rotation. Added to this evidence, summarized here, a power spectrum analysis of the Super-Kamiokande data reveals significant variation in the flux matching a dominant rotation rate observed in the solar magnetic field in the same time period. Three frequency peaks, all related to this rotation rate, can be explained quantitatively. A Super-Kamiokande paper reported no time variation of the flux, but showed the same peaks, there interpreted as statistically insignificant, due to an inappropriate analysis. This modulation is small (7%) in the Super-Kamiokande energy region (and below the sensitivity of the Super-Kamiokande analysis) and is consistent with RSFP as a subdominant neutrino process in the convection zone. The data display effects that correspond to solar-cycle changes in the magnetic field, typical of the convection zone. This subdominant process requires new physics: a large neutrino transition magnetic moment and a light sterile neutrino, since an effect of this amplitude occurring in the convection zone cannot be achieved with the three known neutrinos. It does, however, resolve current problems in providing fits to all experimental estimates of the mean neutrino flux, and is compatible with the extensive evidence for solar neutrino flux variability.Comment: 9 pages, 10 figures (5 in color); new figure, data added to another figure, more clarification, especially on the origin of the effect and its connection to sterile neutrinos; v3 is updated, especially using the results of hep-ph/0402194; v4 is a further update, mainly of references, with a small change to make the title more appropriate; v5 includes more clarification and the result of now having hep-ph/0411148 and hep-ph/0501205 and so increases the length; v6 has a small change in the title and some additional information at the referee's request to correspond to the version to be published in Astroparticle Physic

    Late-Onset Cryopyrin-Associated Periodic Syndromes Caused by Somatic NLRP3 Mosaicism—UK Single Center Experience

    Get PDF
    Cryopyrin-associated periodic syndrome (CAPS) is caused by gain-of-function NLRP3 mutations. Recently, somatic NLRP3 mosaicism has been reported in some CAPS patients who were previously classified as “mutation-negative.” We describe here the clinical and laboratory findings in eight British adult patients who presented with symptoms typical of CAPS other than an onset in mid-late adulthood. All patients underwent comprehensive clinical and laboratory investigations, including analysis of the NLRP3 gene using Sanger and amplicon-based deep sequencing (ADS) along with measurements of extracellular apoptosis-associated speck-like protein with CARD domain (ASC) aggregates. The clinical phenotype in all subjects was consistent with mid-spectrum CAPS, except a median age at disease onset of 50 years. Sanger sequencing of NLRP3 was non-diagnostic but ADS detected a somatic NLRP3 mutation in each case. In one patient, DNA isolated from blood demonstrated an increase in the mutant allele from 5 to 45% over 12 years. ASC aggregates in patients’ serum measured during active disease were significantly higher than healthy controls. This series represents 8% of CAPS patients diagnosed in a single center, suggesting that acquired NLRP3 mutations may not be an uncommon cause of the syndrome and should be sought in all patients with late-onset symptoms otherwise compatible with CAPS. Steadily worsening CAPS symptoms in one patient were associated with clonal expansion of the mutant allele predominantly affecting myeloid cells. Two patients developed AA amyloidosis, which previously has only been reported in CAPS in association with life-long germline NLRP3 mutations

    Age-Related Reference Intervals of the Main Biochemical and Hematological Parameters in C57BL/6J, 129SV/EV and C3H/HeJ Mouse Strains

    Get PDF
    BACKGROUND: Although the mouse is the animal model most widely used to study the pathogenesis and treatment of human diseases, reference values for biochemical parameters are scanty or lacking for the most frequently used strains. We therefore evaluated these parameters in the C57BL/6J, 129SV/EV and C3H/HeJ mice. METHODOLOGY/PRINCIPAL FINDINGS: We measured by dry chemistry 26 analytes relative to electrolyte balance, lipoprotein metabolism, and muscle/heart, liver, kidney and pancreas functions, and by automated blood counter 5 hematological parameters in 30 animals (15 male and 15 female) of each mouse strain at three age ranges: 1-2 months, 3-8 months and 9-12 months. Whole blood was collected from the retro-orbital sinus. We used quality control procedures to investigate analytical imprecision and inaccuracy. Reference values were calculated by non parametric methods (median and 2.5(th) and 97.5(th) percentiles). The Mann-Whitney and Kruskal-Wallis tests were used for between-group comparisons. Median levels of GLU, LDH, Chol and BUN were higher, and LPS, AST, ALP and CHE were lower in males than in females (p range: 0.05-0.001). Inter-strain differences were observed for: (1) GLU, t-Bil, K+, Ca++, PO(4)- (p<0.05) and for TAG, Chol, AST, Fe++ (p<0.001) in 4-8 month-old animals; (2) for CK, Crea, Mg++, Na++, K+, Cl- (p<0.05) and BUN (p<0.001) in 2- and in 10-12 month-old mice; and (3) for WBC, RBC, HGB, HCT and PLT (p<0.05) during the 1 year life span. CONCLUSION/SIGNIFICANCE: Our results indicate that metabolic variations in C57BL/6J, 129SV/EV and C3H/HeJ mice after therapeutic intervention should be evaluated against gender- and age-dependent reference intervals

    A Mouse Model of Harlequin Ichthyosis Delineates a Key Role for Abca12 in Lipid Homeostasis

    Get PDF
    Harlequin Ichthyosis (HI) is a severe and often lethal hyperkeratotic skin disease caused by mutations in the ABCA12 transport protein. In keratinocytes, ABCA12 is thought to regulate the transfer of lipids into small intracellular trafficking vesicles known as lamellar bodies. However, the nature and scope of this regulation remains unclear. As part of an original recessive mouse ENU mutagenesis screen, we have identified and characterised an animal model of HI and showed that it displays many of the hallmarks of the disease including hyperkeratosis, loss of barrier function, and defects in lipid homeostasis. We have used this model to follow disease progression in utero and present evidence that loss of Abca12 function leads to premature differentiation of basal keratinocytes. A comprehensive analysis of lipid levels in mutant epidermis demonstrated profound defects in lipid homeostasis, illustrating for the first time the extent to which Abca12 plays a pivotal role in maintaining lipid balance in the skin. To further investigate the scope of Abca12's activity, we have utilised cells from the mutant mouse to ascribe direct transport functions to the protein and, in doing so, we demonstrate activities independent of its role in lamellar body function. These cells have severely impaired lipid efflux leading to intracellular accumulation of neutral lipids. Furthermore, we identify Abca12 as a mediator of Abca1-regulated cellular cholesterol efflux, a finding that may have significant implications for other diseases of lipid metabolism and homeostasis, including atherosclerosis

    Search for the standard model Higgs boson at LEP

    Get PDF

    Search for the glueball candidates f0(1500) and fJ(1710) in gamma gamma collisions

    Full text link
    Data taken with the ALEPH detector at LEP1 have been used to search for gamma gamma production of the glueball candidates f0(1500) and fJ(1710) via their decay to pi+pi-. No signal is observed and upper limits to the product of gamma gamma width and pi+pi- branching ratio of the f0(1500) and the fJ(1710) have been measured to be Gamma_(gamma gamma -> f0(1500)). BR(f0(1500)->pi+pi-) < 0.31 keV and Gamma_(gamma gamma -> fJ(1710)). BR(fJ(1710)->pi+pi-) < 0.55 keV at 95% confidence level.Comment: 10 pages, 3 figure

    Synapsin II Is Involved in the Molecular Pathway of Lithium Treatment in Bipolar Disorder

    Get PDF
    Bipolar disorder (BD) is a debilitating psychiatric condition with a prevalence of 1–2% in the general population that is characterized by severe episodic shifts in mood ranging from depressive to manic episodes. One of the most common treatments is lithium (Li), with successful response in 30–60% of patients. Synapsin II (SYN2) is a neuronal phosphoprotein that we have previously identified as a possible candidate gene for the etiology of BD and/or response to Li treatment in a genome-wide linkage study focusing on BD patients characterized for excellent response to Li prophylaxis. In the present study we investigated the role of this gene in BD, particularly as it pertains to Li treatment. We investigated the effect of lithium treatment on the expression of SYN2 in lymphoblastoid cell lines from patients characterized as excellent Li-responders, non-responders, as well as non-psychiatric controls. Finally, we sought to determine if Li has a cell-type-specific effect on gene expression in neuronal-derived cell lines. In both in vitro models, we found SYN2 to be modulated by the presence of Li. By focusing on Li-responsive BD we have identified a potential mechanism for Li response in some patients

    Termination of STING responses is mediated via ESCRT-dependent degradation

    Get PDF
    Published online 4 May 2023cGAS-STING signalling is induced by detection of foreign or mislocalised host double-stranded (ds)DNA within the cytosol. STING acts as the major signalling hub, where it controls production of type I interferons and inflammatory cytokines. Basally, STING resides on the ER membrane. Following activation STING traffics to the Golgi to initiate downstream signalling and subsequently to endolysosomal compartments for degradation and termination of signalling. While STING is known to be degraded within lysosomes, the mechanisms controlling its delivery remain poorly defined. Here we utilised a proteomics-based approach to assess phosphorylation changes in primary murine macrophages following STING activation. This identified numerous phosphorylation events in proteins involved in intracellular and vesicular transport. We utilised high-temporal microscopy to track STING vesicular transport in live macrophages. We subsequently identified that the endosomal complexes required for transport (ESCRT) pathway detects ubiquitinated STING on vesicles, which facilitates the degradation of STING in murine macrophages. Disruption of ESCRT functionality greatly enhanced STING signalling and cytokine production, thus characterising a mechanism controlling effective termination of STING signalling.Katherine R Balka, Rajan Venkatraman, Tahnee L Saunders, Angus Shoppee, Ee Shan Pang, Zoe Magill, Jihane Homman-Ludiye, Cheng Huang, Rachael M Lane, Harrison M York, Peck Tan, Ralf B Schittenhelm, Senthil Arumugam, Benjamin T Kile, Meredith O, Keeffe, Dominic De Nard
    • …
    corecore