3,068 research outputs found

    Combining inductive logic programming, active learning and robotics to discover the function of genes

    Get PDF
    The paper is addressed to AI workers with an interest in biomolecular genetics and also to biomolecular geneticists interested in what AI tools may do for them. The authors are engaged in a collaborative enterprise aimed at partially automating some aspects of scientific work. These aspects include the processes of forming hypotheses, devising trials to discriminate between these competing hypotheses, physically performing these trials and then using the results of these trials to converge upon an accurate hypothesis. As a potential component of the reasoning carried out by an "artificial scientist" this paper describes ASE-Progol, an Active Learning system which uses Inductive Logic Programming to construct hypothesised first-order theories and uses a CART-like algorithm to select trials for eliminating ILP derived hypotheses. In simulated yeast growth tests ASE-Progol was used to rediscover how genes participate in the aromatic amino acid pathway of Saccharomyces cerevisiae. The cost of the chemicals consumed in converging upon a hypothesis with an accuracy of around 88% was reduced by five orders of magnitude when trials were selected by ASE-Progol rather than being sampled at random. While the naive strategy of always choosing the cheapest trial from the set of candidate trials led to lower cumulative costs than ASE-Progol, both the naive strategy and the random strategy took significantly longer to converge upon a final hypothesis than ASE-Progol. For example to reach an accuracy of 80%, ASE-Progol required 4 days while random sampling required 6 days and the naive strategy required 10 days

    A generic approach for the development of short-term predictions of Escherichia coli and biotoxins in shellfish

    Get PDF
    Microbiological contamination or elevated marine biotoxin concentrations within shellfish can result in temporary closure of shellfish aquaculture harvesting, leading to financial loss for the aquaculture business and a potential reduction in consumer confidence in shellfish products. We present a method for predicting short-term variations in shellfish concentrations of Escherichia coli and biotoxin (okadaic acid and its derivates dinophysistoxins and pectenotoxins). The approach was evaluated for 2 contrasting shellfish harvesting areas. Through a meta-data analysis and using environmental data in situ, satellite observations and meteorological nowcasts and forecasts), key environmental drivers were identified and used to develop models to predict E. coli and biotoxin concentrations within shellfish. Models were trained and evaluated using independent datasets, and the best models were identified based on the model exhibiting the lowest root mean square error. The best biotoxin model was able to provide 1 wk forecasts with an accuracy of 86%, a 0% false positive rate and a 0% false discovery rate (n = 78 observations) when used to predict the closure of shellfish beds due to biotoxin. The best E. coli models were used to predict the European hygiene classification of the shellfish beds to an accuracy of 99% (n = 107 observations) and 98% (n = 63 observations) for a bay (St Austell Bay) and an estuary (Turnaware Bar), respectively. This generic approach enables high accuracy short-term farm-specific forecasts, based on readily accessible environmental data and observations

    Developing a logical model of yeast metabolism

    Get PDF
    With the completion of the sequencing of genomes of increasing numbers of organisms, the focus of biology is moving to determining the role of these genes (functional genomics). To this end it is useful to view the cell as a biochemical machine: it consumes simple molecules to manufacture more complex ones by chaining together biochemical reactions into long sequences referred to as em metabolic pathways. Such metabolic pathways are not linear but often interesect to form complex networks. Genes play a fundamental role in these networks by providing the information to synthesise the enzymes that catalyse biochemical reactions. Although developing a complete model of metabolism is of fundamental importance to biology and medicine, the size and complexity of the network has proven beyond the capacity of human reasoning. This paper presents the first results of the Robot Scientist research programme that aims to automatically discover the function of genes in the metabolism of the yeast em Saccharomyces cerevisiae. Results include: (1) the first logical model of metabolism;(2) a method to predict phenotype by deductive inference; and (3) a method to infer reactions and gene function by aductive inference. We describe the em in vivo experimental set-up which will allow these em in silico predictions to be automatically tested by a laboratory robot

    D-brane Inspired Fermion Mass Textures

    Get PDF
    In this paper, the issues of the quark mass hierarchies and the Cabbibo Kobayashi Maskawa mixing are analyzed in a class of intersecting D-brane configurations with Standard Model gauge symmetry. The relevant mass matrices are constructed taking into account the constraints imposed by extra abelian symmetries and anomaly cancelation conditions. Possible mass generating mechanisms including perturbative as well as non-perturbative effects are discussed and specific patterns of mass textures are found characterized by the hierarchies of the scales where the various sources contribute. It is argued that the Cholesky decomposition of the mass matrices is the most appropriate way to determine the properties of these fermion mass patterns, while the associated triangular mass matrix form provides a unified description of all phenomenologically equivalent symmetric and non-symmetric mass matrices. An elegant analytic formula is derived for the Cholesky triangular form of the mass matrices where the entries are given as simple functions of the mass eigenstates and the diagonalizing transformation entries. Finally, motivated by the possibility of vanishing zero Yukawa mass entries in several D-brane and F-theory constructions due to the geometry of the internal space, we analyse in detail all possible texture-zeroes mass matrices within the proposed new context. These new texture-zeroes are compared to those existing in the literature while D-brane inspired cases are worked out in detail.Comment: 58 pages, 7 figure

    Global parameter search reveals design principles of the mammalian circadian clock

    Get PDF
    Background: Virtually all living organisms have evolved a circadian (~24 hour) clock that controls physiological and behavioural processes with exquisite precision throughout the day/night cycle. The suprachiasmatic nucleus (SCN), which generates these ~24 h rhythms in mammals, consists of several thousand neurons. Each neuron contains a gene-regulatory network generating molecular oscillations, and the individual neuron oscillations are synchronised by intercellular coupling, presumably via neurotransmitters. Although this basic mechanism is currently accepted and has been recapitulated in mathematical models, several fundamental questions about the design principles of the SCN remain little understood. For example, a remarkable property of the SCN is that the phase of the SCN rhythm resets rapidly after a 'jet lag' type experiment, i.e. when the light/ dark (LD) cycle is abruptly advanced or delayed by several hours. Results: Here, we describe an extensive parameter optimization of a previously constructed simplified model of the SCN in order to further understand its design principles. By examining the top 50 solutions from the parameter optimization, we show that the neurotransmitters' role in generating the molecular circadian rhythms is extremely important. In addition, we show that when a neurotransmitter drives the rhythm of a system of coupled damped oscillators, it exhibits very robust synchronization and is much more easily entrained to light/dark cycles. We were also able to recreate in our simulations the fast rhythm resetting seen after a 'jet lag' type experiment. Conclusion: Our work shows that a careful exploration of parameter space for even an extremely simplified model of the mammalian clock can reveal unexpected behaviours and non-trivial predictions. Our results suggest that the neurotransmitter feedback loop plays a crucial role in the robustness and phase resetting properties of the mammalian clock, even at the single neuron level

    Should Research Ethics Encourage the Production of Cost-Effective Interventions?

    Get PDF
    This project considers whether and how research ethics can contribute to the provision of cost-effective medical interventions. Clinical research ethics represents an underexplored context for the promotion of cost-effectiveness. In particular, although scholars have recently argued that research on less-expensive, less-effective interventions can be ethical, there has been little or no discussion of whether ethical considerations justify curtailing research on more expensive, more effective interventions. Yet considering cost-effectiveness at the research stage can help ensure that scarce resources such as tissue samples or limited subject popula- tions are employed where they do the most good; can support parallel efforts by providers and insurers to promote cost-effectiveness; and can ensure that research has social value and benefits subjects. I discuss and rebut potential objections to the consideration of cost-effectiveness in research, including the difficulty of predicting effectiveness and cost at the research stage, concerns about limitations in cost-effectiveness analysis, and worries about overly limiting researchers’ freedom. I then consider the advantages and disadvantages of having certain participants in the research enterprise, including IRBs, advisory committees, sponsors, investigators, and subjects, consider cost-effectiveness. The project concludes by qualifiedly endorsing the consideration of cost-effectiveness at the research stage. While incorporating cost-effectiveness considerations into the ethical evaluation of human subjects research will not on its own ensure that the health care system realizes cost-effectiveness goals, doing so nonetheless represents an important part of a broader effort to control rising medical costs

    The Hubbard model within the equations of motion approach

    Full text link
    The Hubbard model has a special role in Condensed Matter Theory as it is considered as the simplest Hamiltonian model one can write in order to describe anomalous physical properties of some class of real materials. Unfortunately, this model is not exactly solved except for some limits and therefore one should resort to analytical methods, like the Equations of Motion Approach, or to numerical techniques in order to attain a description of its relevant features in the whole range of physical parameters (interaction, filling and temperature). In this manuscript, the Composite Operator Method, which exploits the above mentioned analytical technique, is presented and systematically applied in order to get information about the behavior of all relevant properties of the model (local, thermodynamic, single- and two- particle ones) in comparison with many other analytical techniques, the above cited known limits and numerical simulations. Within this approach, the Hubbard model is shown to be also capable to describe some anomalous behaviors of the cuprate superconductors.Comment: 232 pages, more than 300 figures, more than 500 reference

    Evidence for an excess of B -> D(*) Tau Nu decays

    Get PDF
    Based on the full BaBar data sample, we report improved measurements of the ratios R(D(*)) = B(B -> D(*) Tau Nu)/B(B -> D(*) l Nu), where l is either e or mu. These ratios are sensitive to new physics contributions in the form of a charged Higgs boson. We measure R(D) = 0.440 +- 0.058 +- 0.042 and R(D*) = 0.332 +- 0.024 +- 0.018, which exceed the Standard Model expectations by 2.0 sigma and 2.7 sigma, respectively. Taken together, our results disagree with these expectations at the 3.4 sigma level. This excess cannot be explained by a charged Higgs boson in the type II two-Higgs-doublet model. We also report the observation of the decay B -> D Tau Nu, with a significance of 6.8 sigma.Comment: Expanded section on systematics, text corrections, improved the format of Figure 2 and included the effect of the change of the Tau polarization due to the charged Higg

    Search for Gravitational Waves from Primordial Black Hole Binary Coalescences in the Galactic Halo

    Get PDF
    We use data from the second science run of the LIGO gravitational-wave detectors to search for the gravitational waves from primordial black hole (PBH) binary coalescence with component masses in the range 0.2--1.0M1.0 M_\odot. The analysis requires a signal to be found in the data from both LIGO observatories, according to a set of coincidence criteria. No inspiral signals were found. Assuming a spherical halo with core radius 5 kpc extending to 50 kpc containing non-spinning black holes with masses in the range 0.2--1.0M1.0 M_\odot, we place an observational upper limit on the rate of PBH coalescence of 63 per year per Milky Way halo (MWH) with 90% confidence.Comment: 7 pages, 4 figures, to be submitted to Phys. Rev.
    corecore