637 research outputs found
Rotavirus infections and climate variability in Dhaka, Bangladesh: a time-series analysis.
Attempts to explain the clear seasonality of rotavirus infections have been made by relating disease incidence to climate factors; however, few studies have disentangled the effects of weather from other factors that might cause seasonality. We investigated the relationships between hospital visits for rotavirus diarrhoea and temperature, humidity and river level, in Dhaka, Bangladesh, using time-series analysis adjusting for other confounding seasonal factors. There was strong evidence for an increase in rotavirus diarrhoea at high temperatures, by 40.2% for each 1 degrees C increase above a threshold (29 degrees C). Relative humidity had a linear inverse relationship with the number of cases of rotavirus diarrhoea. River level, above a threshold (4.8 m), was associated with an increase in cases of rotavirus diarrhoea, by 5.5% per 10-cm river-level rise. Our findings provide evidence that factors associated with high temperature, low humidity and high river-level increase the incidence of rotavirus diarrhoea in Dhaka
Insights into enterotoxigenic Escherichia coli diversity in Bangladesh utilizing genomic epidemiology
Shigella sonnei genome sequencing and phylogenetic analysis indicate recent global dissemination from Europe
Shigella are human-adapted Escherichia coli that have gained the ability to invade the human gut mucosa and cause dysentery1,2, spreading efficiently via low-dose fecal-oral transmission3,4. Historically, S. sonnei has been predominantly responsible for dysentery in developed countries, but is now emerging as a problem in the developing world, apparently replacing the more diverse S. flexneri in areas undergoing economic development and improvements in water quality4-6. Classical approaches have shown S. sonnei is genetically conserved and clonal7. We report here whole-genome sequencing of 132 globally-distributed isolates. Our phylogenetic analysis shows that the current S. sonnei population descends from a common ancestor that existed less than 500 years ago and has diversified into several distinct lineages with unique characteristics. Our analysis suggests the majority of this diversification occurred in Europe, followed by more recent establishment of local pathogen populations in other continents predominantly due to the pandemic spread of a single, rapidly-evolving, multidrug resistant lineage
Household Transmission of Rotavirus in a Community with Rotavirus Vaccination in Quininde, Ecuador
Background: We studied the transmission of rotavirus infection in households in peri-urban Ecuador in the vaccination era.
Methods: Stool samples were collected from household contacts of child rotavirus cases, diarrhea controls and healthy controls following presentation of the index child to health facilities. Rotavirus infection status of contacts was determined by RT-qPCR. We examined factors associated with transmissibility (index-case characteristics) and susceptibility (householdcontact
characteristics).
Results: Amongst cases, diarrhea controls and healthy control household contacts, infection attack rates (iAR) were 55%, 8% and 2%, (n = 137, 130, 137) respectively. iARs were higher from index cases with vomiting, and amongst siblings. Disease ARs were higher when the index child was ,18 months and had vomiting, with household contact ,10 years and those sharing a room with the index case being more susceptible. We found no evidence of asymptomatic infections leading to disease transmission.
Conclusion: Transmission rates of rotavirus are high in households with an infected child, while background infections are rare. We have identified factors associated with transmission (vomiting/young age of index case) and susceptibility (young age/sharing a room/being a sibling of the index case). Vaccination may lead to indirect benefits by averting episodes or reducing symptoms in vaccinees
Evaluation and use of surveillance system data toward the identification of high-risk areas for potential cholera vaccination: a case study from Niger.
In 2008, Africa accounted for 94% of the cholera cases reported worldwide. Although the World Health Organization currently recommends the oral cholera vaccine in endemic areas for high-risk populations, its use in Sub-Saharan Africa has been limited. Here, we provide the principal results of an evaluation of the cholera surveillance system in the region of Maradi in Niger and an analysis of its data towards identifying high-risk areas for cholera
A polymeric immunoglobulin-antigen fusion protein strategy for enhancing vaccine immunogenicity.
In this study, a strategy based on polymeric immunoglobulin G scaffolds (PIGS) was used to produce a vaccine candidate for Mycobacterium tuberculosis. A genetic fusion construct comprising genes encoding the mycobacterial Ag85B antigen, an immunoglobulin γ‐chain fragment and the tailpiece from immunoglobulin μ chain was engineered. Expression was attempted in Chinese Hamster Ovary (CHO) cells and in Nicotiana benthamiana. The recombinant protein assembled into polymeric structures (TB‐PIGS) in N. benthamiana, similar in size to polymeric IgM. These complexes were subsequently shown to bind to the complement protein C1q and FcγRs with increased affinity. Modification of the N‐glycans linked to TB‐PIGS by removal of xylose and fucose residues that are normally found in plant glycosylated proteins also resulted in increased affinity for low‐affinity FcγRs. Immunization studies in mice indicated that TB‐PIGS are highly immunogenic with and without adjuvant. However, they did not improve protective efficacy in mice against challenge with M. tuberculosis compared to conventional vaccination with BCG, suggesting that additional or alternative antigens may be needed to protect against this disease. Nevertheless, these results establish a novel platform for producing polymeric antigen‐IgG γ‐chain molecules with inherent functional characteristics that are desirable in vaccines
TRY plant trait database - enhanced coverage and open access
Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives
Magnetic resonance elastography in a nutshell:Tomographic imaging of soft tissue viscoelasticity for detecting and staging disease with a focus on inflammation
Magnetic resonance elastography (MRE) is an emerging clinical imaging modality for characterizing the viscoelastic properties of soft biological tissues. MRE shows great promise in the noninvasive diagnosis of various diseases, especially those associated with soft tissue changes involving the extracellular matrix, cell density, or fluid turnover including altered blood perfusion – all hallmarks of inflammation from early events to cancer development. This review covers the fundamental principles of measuring tissue viscoelasticity by MRE, which are based on the stimulation and encoding of shear waves and their conversion into parameter maps of mechanical properties by inverse problem solutions of the wave equation. Technical challenges posed by real-world biological tissue properties such as viscosity, heterogeneity, anisotropy, and nonlinear elastic behavior of tissues are discussed. Applications of MRE measurement in both humans and animal models are presented, with emphasis on the detection, characterization, and staging of diseases related to the cascade of biomechanical property changes from early to chronic inflammation in the liver and brain. Overall, MRE provides valuable insights into the biophysics of soft tissues for imaging-based detection and staging of inflammation-associated tissue changes.</p
Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease
Background: Experimental and clinical data suggest that reducing inflammation without affecting lipid levels may reduce the risk of cardiovascular disease. Yet, the inflammatory hypothesis of atherothrombosis has remained unproved. Methods: We conducted a randomized, double-blind trial of canakinumab, a therapeutic monoclonal antibody targeting interleukin-1β, involving 10,061 patients with previous myocardial infarction and a high-sensitivity C-reactive protein level of 2 mg or more per liter. The trial compared three doses of canakinumab (50 mg, 150 mg, and 300 mg, administered subcutaneously every 3 months) with placebo. The primary efficacy end point was nonfatal myocardial infarction, nonfatal stroke, or cardiovascular death. RESULTS: At 48 months, the median reduction from baseline in the high-sensitivity C-reactive protein level was 26 percentage points greater in the group that received the 50-mg dose of canakinumab, 37 percentage points greater in the 150-mg group, and 41 percentage points greater in the 300-mg group than in the placebo group. Canakinumab did not reduce lipid levels from baseline. At a median follow-up of 3.7 years, the incidence rate for the primary end point was 4.50 events per 100 person-years in the placebo group, 4.11 events per 100 person-years in the 50-mg group, 3.86 events per 100 person-years in the 150-mg group, and 3.90 events per 100 person-years in the 300-mg group. The hazard ratios as compared with placebo were as follows: in the 50-mg group, 0.93 (95% confidence interval [CI], 0.80 to 1.07; P = 0.30); in the 150-mg group, 0.85 (95% CI, 0.74 to 0.98; P = 0.021); and in the 300-mg group, 0.86 (95% CI, 0.75 to 0.99; P = 0.031). The 150-mg dose, but not the other doses, met the prespecified multiplicity-adjusted threshold for statistical significance for the primary end point and the secondary end point that additionally included hospitalization for unstable angina that led to urgent revascularization (hazard ratio vs. placebo, 0.83; 95% CI, 0.73 to 0.95; P = 0.005). Canakinumab was associated with a higher incidence of fatal infection than was placebo. There was no significant difference in all-cause mortality (hazard ratio for all canakinumab doses vs. placebo, 0.94; 95% CI, 0.83 to 1.06; P = 0.31). Conclusions: Antiinflammatory therapy targeting the interleukin-1β innate immunity pathway with canakinumab at a dose of 150 mg every 3 months led to a significantly lower rate of recurrent cardiovascular events than placebo, independent of lipid-level lowering. (Funded by Novartis; CANTOS ClinicalTrials.gov number, NCT01327846.
Cardiac MR Elastography: Comparison with left ventricular pressure measurement
Purpose of the Study: To compare magnetic resonance elastography (MRE) with ventricular pressure changes in an animal model.
Methods: Three pigs of different cardiac physiology (weight, 25 to 53 kg; heart rate, 61 to 93 bpm; left ventricular [LV] end-diastolic volume, 35 to 70 ml) were subjected to invasive LV pressure measurement by catheter and noninvasive cardiac MRE. Cardiac MRE was performed in a short-axis view of the heart and applying a 48.3-Hz shear-wave stimulus. Relative changes in LV-shear wave amplitudes during the cardiac cycle were analyzed. Correlation coefficients between wave amplitudes and LV pressure as well as between wave amplitudes and LV diameter were determined.
Results: A relationship between MRE and LV pressure was observed in all three animals (R-square [greater than or equal to] 0.76). No correlation was observed between MRE and LV diameter (R-square [less than or equal to] 0.15). Instead, shear wave amplitudes decreased 102 +/- 58 ms earlier than LV diameters at systole and amplitudes increased 175 +/- 40 ms before LV dilatation at diastole. Amplitude ratios between diastole and systole ranged from 2.0 to 2.8, corresponding to LV pressure differences of 60 to 73 mmHg.
Conclusion: Externally induced shear waves provide information reflecting intraventricular pressure changes which, if substantiated in further experiments, has potential to make cardiac MRE a unique noninvasive imaging modality for measuring pressure-volume function of the heart
- …
