39 research outputs found

    Ecosystem Services in Conservation Planning: Targeted Benefits vs. Co-Benefits or Costs?

    Get PDF
    There is growing support for characterizing ecosystem services in order to link conservation and human well-being. However, few studies have explicitly included ecosystem services within systematic conservation planning, and those that have follow two fundamentally different approaches: ecosystem services as intrinsically-important targeted benefits vs. substitutable co-benefits. We present a first comparison of these two approaches in a case study in the Central Interior of British Columbia. We calculated and mapped economic values for carbon storage, timber production, and recreational angling using a geographical information system (GIS). These ‘marginal’ values represent the difference in service-provision between conservation and managed forestry as land uses. We compared two approaches to including ecosystem services in the site-selection software Marxan: as Targeted Benefits, and as Co-Benefits/Costs (in Marxan's cost function); we also compared these approaches with a Hybrid approach (carbon and angling as targeted benefits, timber as an opportunity cost). For this analysis, the Co-Benefit/Cost approach yielded a less costly reserve network than the Hybrid approach (1.6% cheaper). Including timber harvest as an opportunity cost in the cost function resulted in a reserve network that achieved targets equivalently, but at 15% lower total cost. We found counter-intuitive results for conservation: conservation-compatible services (carbon, angling) were positively correlated with each other and biodiversity, whereas the conservation-incompatible service (timber) was negatively correlated with all other networks. Our findings suggest that including ecosystem services within a conservation plan may be most cost-effective when they are represented as substitutable co-benefits/costs, rather than as targeted benefits. By explicitly valuing the costs and benefits associated with services, we may be able to achieve meaningful biodiversity conservation at lower cost and with greater co-benefits

    Spatial and Temporal Trends of Global Pollination Benefit

    Get PDF
    Pollination is a well-studied and at the same time a threatened ecosystem service. A significant part of global crop production depends on or profits from pollination by animals. Using detailed information on global crop yields of 60 pollination dependent or profiting crops, we provide a map of global pollination benefits on a 5′ by 5′ latitude-longitude grid. The current spatial pattern of pollination benefits is only partly correlated with climate variables and the distribution of cropland. The resulting map of pollination benefits identifies hot spots of pollination benefits at sufficient detail to guide political decisions on where to protect pollination services by investing in structural diversity of land use. Additionally, we investigated the vulnerability of the national economies with respect to potential decline of pollination services as the portion of the (agricultural) economy depending on pollination benefits. While the general dependency of the agricultural economy on pollination seems to be stable from 1993 until 2009, we see increases in producer prices for pollination dependent crops, which we interpret as an early warning signal for a conflict between pollination service and other land uses at the global scale. Our spatially explicit analysis of global pollination benefit points to hot spots for the generation of pollination benefits and can serve as a base for further planning of land use, protection sites and agricultural policies for maintaining pollination services

    Resilience Management for Healthy Cities in a Changing Climate

    Get PDF
    Cities are experiencing multiple impacts from global environmental change, and the degree to which they will need to cope with and adapt to these challenges will continue to increase. We argue that a ‘complex systems and resilience management’ view may significantly help guide future urban development through innovative integration of, for example, grey, blue and green infrastructure embedded in flexible institutions (both formal and informal) for multi-functionality and improved health. For instance, the urban heat island effect will further increase city-centre temperatures during projected more frequent and intense heat waves. The elderly and people with chronic cardiovascular and respiratory diseases are particularly vulnerable to heat. Integrating vegetation and especially trees in the urban infrastructure helps reduce temperatures by shading and evapotranspiration. Great complexity and uncertainty of urban social-ecological systems are behind this heatwave-health nexus, and they need to be addressed in a more comprehensive manner. We argue that a systems perspective can lead to innovative designs of new urban infrastructure and the redesign of existing structures. Particularly to promoting the integration of grey, green and blue infrastructure in urban planning through institutional innovation and structural reorganization of knowledge-action systems may significantly enhance prospects for improved urban health and greater resilience under various scenarios of climate change.info:eu-repo/semantics/publishedVersio

    Urban Biodiversity and Landscape Ecology: Patterns, Processes and Planning

    Get PDF
    Effective planning for biodiversity in cities and towns is increasingly important as urban areas and their human populations grow, both to achieve conservation goals and because ecological communities support services on which humans depend. Landscape ecology provides important frameworks for understanding and conserving urban biodiversity both within cities and considering whole cities in their regional context, and has played an important role in the development of a substantial and expanding body of knowledge about urban landscapes and communities. Characteristics of the whole city including size, overall amount of green space, age and regional context are important considerations for understanding and planning for biotic assemblages at the scale of entire cities, but have received relatively little research attention. Studies of biodiversity within cities are more abundant and show that longstanding principles regarding how patch size, configuration and composition influence biodiversity apply to urban areas as they do in other habitats. However, the fine spatial scales at which urban areas are fragmented and the altered temporal dynamics compared to non-urban areas indicate a need to apply hierarchical multi-scalar landscape ecology models to urban environments. Transferring results from landscape-scale urban biodiversity research into planning remains challenging, not least because of the requirements for urban green space to provide multiple functions. An increasing array of tools is available to meet this challenge and increasingly requires ecologists to work with planners to address biodiversity challenges. Biodiversity conservation and enhancement is just one strand in urban planning, but is increasingly important in a rapidly urbanising world

    Fixed-Charge Trimethyl Pyrilium Modification for Enabling Enhanced Top-Down Mass Spectrometry Sequencing of Intact Protein Complexes.

    No full text
    Mass spectrometry of intact proteins and protein complexes has the potential to provide a transformative level of information on biological systems, ranging from sequence and post-translational modification analysis to the structures of whole protein assemblies. This ambitious goal requires the efficient fragmentation of both intact proteins and the macromolecular, multicomponent machines they collaborate to create through noncovalent interactions. Improving technologies in an effort to achieve such fragmentation remains perhaps the greatest challenge facing current efforts to comprehensively analyze cellular protein composition and is essential to realizing the full potential of proteomics. In this work, we describe the use of a trimethyl pyrylium (TMP) fixed-charge covalent labeling strategy aimed at enhancing fragmentation for challenging intact proteins and intact protein complexes. Combining analysis of TMP-modified and unmodified protein complexes results in a greater diversity of regions within the protein that give rise to fragments, and results in an up to 2.5-fold increase in sequence coverage when compared to unmodified protein alone, for protein complexes up to 148 kDa. TMP modification offers a simple and powerful platform to expand the capabilities of existing mass spectrometric instrumentation for the complete characterization of intact protein assemblies

    Enhancing multiplexed cysteine chemoproteomics by uniting FragPipe with solid-phase compatible dialkoxydiphenylsilane reagents

    No full text
    The human proteome harbors tens of thousands of ligandable or potentially druggable cysteine residues. Consequently, pinpointing the optimal covalent molecule for each cysteine residue represents an exciting means to close the druggability gap, namely the ~96% of human proteins not yet targeted by an FDA approved drug. Realizing the full therapeutic potential of the cysteineome will require comprehensive proteome-wide cysteine-compound structure activity relationship (SAR) analysis. While mass spectrometry-based chemoproteomic platforms have made significant inroads into this challenge, achieving comprehensive cysteine-SAR necessitates technical innovation in two key areas: (1) streamlined sample preparation workflows and (2) high throughput and high coverage data acquisition. Here we report the silane-based Cleavable Linkers for Isotopically labeled Proteomics (sCLIP) method. sCLIP streamlines sample preparation with unparalleled early-stage isobaric labeling and sample pooling, allowing for high coverage and increased sample throughput via customized low cost 6-plex sample multiplexing. The sCLIP method is distinguished by its unprecedented click-assembled isobaric tags, in which the reporter group is encoded in the sCLIP capture reagent and balancer in the pan cysteine-reactive probe. When paired with a custom FragPipe data analysis workflow and applied to cysteine-reactive fragment screens, sCLIP proteomics revealed established and unprecedented cysteine-ligand pairs, including the discovery that the mitochondrial uncoupling agent FCCP acts as a covalent-reversible cysteine-reactive electrophile
    corecore