141 research outputs found

    An Open, Programmable, Multi-vendor 5G O-RAN Testbed with NVIDIA ARC and OpenAirInterface

    Full text link
    The transition of fifth generation (5G) cellular systems to softwarized, programmable, and intelligent networks depends on successfully enabling public and private 5G deployments that are (i) fully software-driven and (ii) with a performance at par with that of traditional monolithic systems. This requires hardware acceleration to scale the Physical (PHY) layer performance, end-to-end integration and testing, and careful planning of the Radio Frequency (RF) environment. In this paper, we describe how the X5G testbed at Northeastern University has addressed these challenges through the first 8-node network deployment of the NVIDIA Aerial Research Cloud (ARC), with the Aerial SDK for the PHY layer, accelerated on Graphics Processing Unit (GPU), and through its integration with higher layers from the OpenAirInterface (OAI) open-source project through the Small Cell Forum Functional Application Platform Interface (FAPI). We discuss software integration, the network infrastructure, and a digital twin framework for RF planning. We then profile the performance with up to 4 Commercial Off-the-Shelf (COTS) smartphones for each base station with iPerf and video streaming applications, measuring a cell rate higher than 500 Mbps in downlink and 45 Mbps in uplink.Comment: 6 pages, 9 figures, 4 table

    Disseminated Microsporidiosis in an Immunosuppressed Patient

    Get PDF
    We report a case of disseminated microsporidiosis in a patient with multiple myeloma who had received an allogeneic stem cell transplant requiring substantial immunosuppression. The causative organism was identified as Tubulinosema acridophagus, confirming this genus of microsporidia as a novel human pathogen

    (E)-2-(4-Arylbut-1-en-3-yn-1-yl)chromones as synthons for the synthesis of xanthone-1,2,3-triazole dyads

    Get PDF
    Xanthone-1,2,3-triazole dyads have been synthesized by two different approaches, both starting from novel (E)-2-(4-arylbut-1-en-3-yn-1-yl)chromones, prepared through a base-catalyzed aldol reaction of 2-methylchromone and arylpropargyl aldehydes. In the first method, the xanthone moiety is built by Diels-Alder reaction of the referred unsaturated chromones with N-methylmaleimide under microwave irradiation, followed by oxidation of the obtained adducts with DDQ, whereas the 1,2,3-triazole ring results from the cycloaddition reaction of the acetylene moiety with sodium azide. The second strategy first involves the cycloaddition reaction with sodium azide to provide the 1,2,3-triazole ring, followed by methylation of the triazole NH group prior to Diels-Alder reaction with N-methylmaleimide. The last step in this synthesis of novel xanthone-1,2,3-triazole dyads entails oxidation of the cycloadducts with DDQ

    Drug allergy

    Get PDF
    Drug allergy encompasses a spectrum of immunologically-mediated hypersensitivity reactions with varying mechanisms and clinical presentations. This type of adverse drug reaction (ADR) not only affects patient quality of life, but may also lead to delayed treatment, unnecessary investigations, and even mortality. Given the myriad of symptoms associated with the condition, diagnosis is often challenging. Therefore, referral to an allergist experienced in the identification, diagnosis and management of drug allergy is recommended if a drug-induced allergic reaction is suspected. Diagnosis relies on a careful history and physical examination. In some instances, skin testing, graded challenges and induction of drug tolerance procedures may be required

    Optimization of sequence alignment for simple sequence repeat regions

    Get PDF
    Abstract Background Microsatellites, or simple sequence repeats (SSRs), are tandemly repeated DNA sequences, including tandem copies of specific sequences no longer than six bases, that are distributed in the genome. SSR has been used as a molecular marker because it is easy to detect and is used in a range of applications, including genetic diversity, genome mapping, and marker assisted selection. It is also very mutable because of slipping in the DNA polymerase during DNA replication. This unique mutation increases the insertion/deletion (INDELs) mutation frequency to a high ratio - more than other types of molecular markers such as single nucleotide polymorphism (SNPs). SNPs are more frequent than INDELs. Therefore, all designed algorithms for sequence alignment fit the vast majority of the genomic sequence without considering microsatellite regions, as unique sequences that require special consideration. The old algorithm is limited in its application because there are many overlaps between different repeat units which result in false evolutionary relationships. Findings To overcome the limitation of the aligning algorithm when dealing with SSR loci, a new algorithm was developed using PERL script with a Tk graphical interface. This program is based on aligning sequences after determining the repeated units first, and the last SSR nucleotides positions. This results in a shifting process according to the inserted repeated unit type. When studying the phylogenic relations before and after applying the new algorithm, many differences in the trees were obtained by increasing the SSR length and complexity. However, less distance between different linage had been observed after applying the new algorithm. Conclusions The new algorithm produces better estimates for aligning SSR loci because it reflects more reliable evolutionary relations between different linages. It reduces overlapping during SSR alignment, which results in a more realistic phylogenic relationship.</p

    The High Radiosensitizing Efficiency of a Trace of Gadolinium-Based Nanoparticles in Tumors

    Get PDF
    International audienceWe recently developed the synthesis of ultrasmall gadolinium-based nanoparticles (GBN), (hydrodynamic diameter <5 nm) characterized by a safe behavior after intravenous injection (renal clearance, preferential accumulation in tumors). Owing to the presence of gadolinium ions, GBN can be used as contrast agents for magnetic resonance imaging (MRI) and as radiosensitizers. The attempt to determine the most opportune delay between the intravenous injection of GBN and the irradiation showed that a very low content of radiosensitizing nanoparticles in the tumor area is sufficient (0.1 μg/g of particles, i.e. 15 ppb of gadolinium) for an important increase of the therapeutic effect of irradiation. Such a promising and unexpected result is assigned to a suited distribution of GBN within the tumor, as revealed by the X-ray fluorescence (XRF) maps

    Bio-nanotechnology application in wastewater treatment

    Get PDF
    The nanoparticles have received high interest in the field of medicine and water purification, however, the nanomaterials produced by chemical and physical methods are considered hazardous, expensive, and leave behind harmful substances to the environment. This chapter aimed to focus on green-synthesized nanoparticles and their medical applications. Moreover, the chapter highlighted the applicability of the metallic nanoparticles (MNPs) in the inactivation of microbial cells due to their high surface and small particle size. Modifying nanomaterials produced by green-methods is safe, inexpensive, and easy. Therefore, the control and modification of nanoparticles and their properties were also discussed

    A Dual Color Far-Red to Near-Infrared Firefly Luciferin Analogue Designed for Multi-Parametric Bioluminescence Imaging

    Get PDF
    Red-shifted bioluminescent emitters allow improved in vivo tissue penetration and signal quantification, and have led to the development of beetle luciferin analogues that elicit red-shifted bioluminescence with firefly luciferase. However, unlike natural luciferin, none have been shown to emit different colors with different luciferases. We have synthesized and tested the first dual color, far-red to near infrared (nIR) emitting analogue of beetle luciferin, which akin to natural luciferin exhibits pH dependent fluorescence spectra and emits bioluminescence of different colors with different engineered Fluc enzymes. Our analogue produces different far-red to nIR emission maxima with different Fluc mutants up to .max 706 nm. This is the furthest red-shifted form of bioluminescence reported without the requirement of a resonance energy transfer acceptor and such improvement should allow tissues to be more effectively probed using multiparametric deep-tissue bioluminescence imaging

    What Is a Microsatellite: A Computational and Experimental Definition Based upon Repeat Mutational Behavior at A/T and GT/AC Repeats

    Get PDF
    Microsatellites are abundant in eukaryotic genomes and have high rates of strand slippage-induced repeat number alterations. They are popular genetic markers, and their mutations are associated with numerous neurological diseases. However, the minimal number of repeats required to constitute a microsatellite has been debated, and a definition of a microsatellite that considers its mutational behavior has been lacking. To define a microsatellite, we investigated slippage dynamics for a range of repeat sizes, utilizing two approaches. Computationally, we assessed length polymorphism at repeat loci in ten ENCODE regions resequenced in four human populations, assuming that the occurrence of polymorphism reflects strand slippage rates. Experimentally, we determined the in vitro DNA polymerase-mediated strand slippage error rates as a function of repeat number. In both approaches, we compared strand slippage rates at tandem repeats with the background slippage rates. We observed two distinct modes of mutational behavior. At small repeat numbers, slippage rates were low and indistinguishable from background measurements. A marked transition in mutability was observed as the repeat array lengthened, such that slippage rates at large repeat numbers were significantly higher than the background rates. For both mononucleotide and dinucleotide microsatellites studied, the transition length corresponded to a similar number of nucleotides (approximately 10). Thus, microsatellite threshold is determined not by the presence/absence of strand slippage at repeats but by an abrupt alteration in slippage rates relative to background. These findings have implications for understanding microsatellite mutagenesis, standardization of genome-wide microsatellite analyses, and predicting polymorphism levels of individual microsatellite loci

    Design and Implementation of Degenerate Microsatellite Primers for the Mammalian Clade

    Get PDF
    Microsatellites are popular genetic markers in molecular ecology, genetic mapping and forensics. Unfortunately, despite recent advances, the isolation of de novo polymorphic microsatellite loci often requires expensive and intensive groundwork. Primers developed for a focal species are commonly tested in a related, non-focal species of interest for the amplification of orthologous polymorphic loci; when successful, this approach significantly reduces cost and time of microsatellite development. However, transferability of polymorphic microsatellite loci decreases rapidly with increasing evolutionary distance, and this approach has shown its limits. Whole genome sequences represent an under-exploited resource to develop cross-species primers for microsatellites. Here we describe a three-step method that combines a novel in silico pipeline that we use to (1) identify conserved microsatellite loci from a multiple genome alignments, (2) design degenerate primer pairs, with (3) a simple PCR protocol used to implement these primers across species. Using this approach we developed a set of primers for the mammalian clade. We found 126,306 human microsatellites conserved in mammalian aligned sequences, and isolated 5,596 loci using criteria based on wide conservation. From a random subset of ∼1000 dinucleotide repeats, we designed degenerate primer pairs for 19 loci, of which five produced polymorphic fragments in up to 18 mammalian species, including the distinctly related marsupials and monotremes, groups that diverged from other mammals 120–160 million years ago. Using our method, many more cross-clade microsatellite loci can be harvested from the currently available genomic data, and this ability is set to improve exponentially as further genomes are sequenced
    corecore