1,879 research outputs found

    Fermentation kinetics including product and substrate inhibitions plus biomass death: a mathematical analysis

    Full text link
    Fermentation is generally modelled by kinetic equations giving the time evolutions for biomass, substrate, and product concentrations. Although these equations can be solved analytically in simple cases if substrate/product inhibition and biomass death are included, they are typically solved numerically. We propose an analytical treatment of the kinetic equations --including cell death and an arbitrary number of inhibitions-- in which constant yield needs not be assumed. Equations are solved in phase space, i.e. the biomass concentration is written explicitly as a function of the substrate concentration.Comment: 4 pages, 4 figure

    Reproducibility comparison among multiangle spectrophotometers

    Get PDF
    New color-measuring instruments known as multiangle spectrophotometers have been recently created to measure and characterize the goniochromism of special-effect pigments in many materials with a particular visual appearance (metallic, interference, pearlescent, sparkle, or glitter). These devices measure the gonioapparent color from the spectral relative reflectance factor and the L*a*b* values of the sample with different illumination and observation angles. These angles usually coincide with requirements marked in American Society for Testing and Materials (ASTM) and Deutsches Institut Für Normung standards relating to the gonioapparent color, but the results of comparisons between these instruments are still inconclusive. Therefore, the main purpose of this study is to compare several multiangle spectrophotometers at a reproducibility level according to ASTM E2214-08 guidelines. In particular, we compared two X-Rite multi-gonio spectrophotometers (MA98 and MA68II), a Datacolor multi-gonio spectrophotometer (FX10), and a BYK multi-gonio spectrophotometer (BYK-mac). These instruments share only five common measurement geometries: 45° × −30° (as 15°), 45° × −20° (as 25°), 45° × 0° (as 45°), 45° × 30° (as 75°), 45° × 65° (as 110°). Specific statistical studies were used for the reproducibility comparison, including a Hotelling test and a statistical intercomparison test to determine the confidence interval of the partial color differences ΔL*, Δa*, Δb*, and the total color difference ΔE*ab. This was conducted using a database collection of 88 metallic and pearlescent samples that were measured 20 times without the replacement of all the instruments. The final findings show that in most measurement geometries, the reproducibility differences between pairs of instruments are statistically significant, although in general, there is a better reproducibility level at certain common geometries for newer instruments (MA98 and BYK-mac). This means that these differences are due to systematic or bias errors (angle tolerances for each geometry, photometric scales, white standards, etc.), but not exclusively to random errors. However, neither of the statistical tests used is valid to discriminate and quantify the detected bias errors in this comparison between instruments.Spanish Ministry of Science and Innovation; contract grant number: DPI2008-06455-C02-02

    Transcriptome profiling of grapevine seedless segregants during berry development reveals candidate genes associated with berry weight

    Get PDF
    Indexación: Web of Science; PubMedBackground Berry size is considered as one of the main selection criteria in table grape breeding programs. However, this is a quantitative and polygenic trait, and its genetic determination is still poorly understood. Considering its economic importance, it is relevant to determine its genetic architecture and elucidate the mechanisms involved in its expression. To approach this issue, an RNA-Seq experiment based on Illumina platform was performed (14 libraries), including seedless segregants with contrasting phenotypes for berry weight at fruit setting (FST) and 6–8 mm berries (B68) phenological stages. Results A group of 526 differentially expressed (DE) genes were identified, by comparing seedless segregants with contrasting phenotypes for berry weight: 101 genes from the FST stage and 463 from the B68 stage. Also, we integrated differential expression, principal components analysis (PCA), correlations and network co-expression analyses to characterize the transcriptome profiling observed in segregants with contrasting phenotypes for berry weight. After this, 68 DE genes were selected as candidate genes, and seven candidate genes were validated by real time-PCR, confirming their expression profiles. Conclusions We have carried out the first transcriptome analysis focused on table grape seedless segregants with contrasting phenotypes for berry weight. Our findings contributed to the understanding of the mechanisms involved in berry weight determination. Also, this comparative transcriptome profiling revealed candidate genes for berry weight which could be evaluated as selection tools in table grape breeding programs.http://bmcplantbiol.biomedcentral.com/articles/10.1186/s12870-016-0789-

    An observational study of patient characteristics associated with the mode of admission to acute stroke services in North East, England

    Get PDF
    Objective Effective provision of urgent stroke care relies upon admission to hospital by emergency ambulance and may involve pre-hospital redirection. The proportion and characteristics of patients who do not arrive by emergency ambulance and their impact on service efficiency is unclear. To assist in the planning of regional stroke services we examined the volume, characteristics and prognosis of patients according to the mode of presentation to local services. Study design and setting A prospective regional database of consecutive acute stroke admissions was conducted in North East, England between 01/09/10-30/09/11. Case ascertainment and transport mode were checked against hospital coding and ambulance dispatch databases. Results Twelve acute stroke units contributed data for a mean of 10.7 months. 2792/3131 (89%) patients received a diagnosis of stroke within 24 hours of admission: 2002 arrivals by emergency ambulance; 538 by private transport or non-emergency ambulance; 252 unknown mode. Emergency ambulance patients were older (76 vs 69 years), more likely to be from institutional care (10% vs 1%) and experiencing total anterior circulation symptoms (27% vs 6%). Thrombolysis treatment was commoner following emergency admission (11% vs 4%). However patients attending without emergency ambulance had lower inpatient mortality (2% vs 18%), a lower rate of institutionalisation (1% vs 6%) and less need for daily carers (7% vs 16%). 149/155 (96%) of highly dependent patients were admitted by emergency ambulance, but none received thrombolysis. Conclusion Presentations of new stroke without emergency ambulance involvement were not unusual but were associated with a better outcome due to younger age, milder neurological impairment and lower levels of pre-stroke dependency. Most patients with a high level of pre-stroke dependency arrived by emergency ambulance but did not receive thrombolysis. It is important to be aware of easily identifiable demographic groups that differ in their potential to gain from different service configurations

    Evaluation of machine-learning methods for ligand-based virtual screening

    Get PDF
    Machine-learning methods can be used for virtual screening by analysing the structural characteristics of molecules of known (in)activity, and we here discuss the use of kernel discrimination and naive Bayesian classifier (NBC) methods for this purpose. We report a kernel method that allows the processing of molecules represented by binary, integer and real-valued descriptors, and show that it is little different in screening performance from a previously described kernel that had been developed specifically for the analysis of binary fingerprint representations of molecular structure. We then evaluate the performance of an NBC when the training-set contains only a very few active molecules. In such cases, a simpler approach based on group fusion would appear to provide superior screening performance, especially when structurally heterogeneous datasets are to be processed

    Shot noise in mesoscopic systems

    Get PDF
    This is a review of shot noise, the time-dependent fluctuations in the electrical current due to the discreteness of the electron charge, in small conductors. The shot-noise power can be smaller than that of a Poisson process as a result of correlations in the electron transmission imposed by the Pauli principle. This suppression takes on simple universal values in a symmetric double-barrier junction (suppression factor 1/2), a disordered metal (factor 1/3), and a chaotic cavity (factor 1/4). Loss of phase coherence has no effect on this shot-noise suppression, while thermalization of the electrons due to electron-electron scattering increases the shot noise slightly. Sub-Poissonian shot noise has been observed experimentally. So far unobserved phenomena involve the interplay of shot noise with the Aharonov-Bohm effect, Andreev reflection, and the fractional quantum Hall effect.Comment: 37 pages, Latex, 10 figures (eps). To be published in "Mesoscopic Electron Transport," edited by L. P. Kouwenhoven, G. Schoen, and L. L. Sohn, NATO ASI Series E (Kluwer Academic Publishing, Dordrecht

    Experimental Quantum Hamiltonian Learning

    Get PDF
    Efficiently characterising quantum systems, verifying operations of quantum devices and validating underpinning physical models, are central challenges for the development of quantum technologies and for our continued understanding of foundational physics. Machine-learning enhanced by quantum simulators has been proposed as a route to improve the computational cost of performing these studies. Here we interface two different quantum systems through a classical channel - a silicon-photonics quantum simulator and an electron spin in a diamond nitrogen-vacancy centre - and use the former to learn the latter's Hamiltonian via Bayesian inference. We learn the salient Hamiltonian parameter with an uncertainty of approximately 10510^{-5}. Furthermore, an observed saturation in the learning algorithm suggests deficiencies in the underlying Hamiltonian model, which we exploit to further improve the model itself. We go on to implement an interactive version of the protocol and experimentally show its ability to characterise the operation of the quantum photonic device. This work demonstrates powerful new quantum-enhanced techniques for investigating foundational physical models and characterising quantum technologies

    The Rewiring of Ubiquitination Targets in a Pathogenic Yeast Promotes Metabolic Flexibility, Host Colonization and Virulence

    Get PDF
    Funding: This work was funded by the European Research Council [http://erc.europa.eu/], AJPB (STRIFE Advanced Grant; C-2009-AdG-249793). The work was also supported by: the Wellcome Trust [www.wellcome.ac.uk], AJPB (080088, 097377); the UK Biotechnology and Biological Research Council [www.bbsrc.ac.uk], AJPB (BB/F00513X/1, BB/K017365/1); the CNPq-Brazil [http://cnpq.br], GMA (Science without Borders fellowship 202976/2014-9); and the National Centre for the Replacement, Refinement and Reduction of Animals in Research [www.nc3rs.org.uk], DMM (NC/K000306/1). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Acknowledgments We thank Dr. Elizabeth Johnson (Mycology Reference Laboratory, Bristol) for providing strains, and the Aberdeen Proteomics facility for the biotyping of S. cerevisiae clinical isolates, and to Euroscarf for providing S. cerevisiae strains and plasmids. We are grateful to our Microscopy Facility in the Institute of Medical Sciences for their expert help with the electron microscopy, and to our friends in the Aberdeen Fungal Group for insightful discussions.Peer reviewedPublisher PD

    A mathematical and computational review of Hartree-Fock SCF methods in Quantum Chemistry

    Get PDF
    We present here a review of the fundamental topics of Hartree-Fock theory in Quantum Chemistry. From the molecular Hamiltonian, using and discussing the Born-Oppenheimer approximation, we arrive to the Hartree and Hartree-Fock equations for the electronic problem. Special emphasis is placed in the most relevant mathematical aspects of the theoretical derivation of the final equations, as well as in the results regarding the existence and uniqueness of their solutions. All Hartree-Fock versions with different spin restrictions are systematically extracted from the general case, thus providing a unifying framework. Then, the discretization of the one-electron orbitals space is reviewed and the Roothaan-Hall formalism introduced. This leads to a exposition of the basic underlying concepts related to the construction and selection of Gaussian basis sets, focusing in algorithmic efficiency issues. Finally, we close the review with a section in which the most relevant modern developments (specially those related to the design of linear-scaling methods) are commented and linked to the issues discussed. The whole work is intentionally introductory and rather self-contained, so that it may be useful for non experts that aim to use quantum chemical methods in interdisciplinary applications. Moreover, much material that is found scattered in the literature has been put together here to facilitate comprehension and to serve as a handy reference.Comment: 64 pages, 3 figures, tMPH2e.cls style file, doublesp, mathbbol and subeqn package
    corecore