838 research outputs found

    Observable Signatures of Planet Accretion in Red Giant Stars I: Rapid Rotation and Light Element Replenishment

    Full text link
    The orbital angular momentum of a close-orbiting giant planet can be sufficiently large that, if transferred to the envelope of the host star during the red giant branch (RGB) evolution, it can spin-up the star's rotation to unusually large speeds. This spin-up mechanism is one possible explanation for the rapid rotators detected among the population of generally slow-rotating red giant stars. These rapid rotators thus comprise a unique stellar sample suitable for searching for signatures of planet accretion in the form of unusual stellar abundances due to the dissemination of the accreted planet in the stellar envelope. In this study, we look for signatures of replenishment in the Li abundances and (to a lesser extent) 12C/13C, which are both normally lowered during RGB evolution. Accurate abundances were measured from high signal-to-noise echelle spectra for samples of both slow and rapid rotator red giant stars. We find that the rapid rotators are on average enriched in lithium compared to the slow rotators, but both groups of stars have identical distributions of 12C/13C within our measurement precision. Both of these abundance results are consistent with the accretion of planets of only a few Jupiter masses. We also explore alternative scenarios for understanding the most Li-rich stars in our sample---particularly Li regeneration during various stages of stellar evolution. Finally, we find that our stellar samples show non-standard abundances even at early RGB stages, suggesting that initial protostellar Li abundances and 12C/13C may be more variable than originally thought.Comment: Accepted for publication in the Astrophysical Journal. 29 pages in emulateapj format, including 16 figures and 12 tables. Tables 4 and 8 are provided in their entirety as plain text ancillary files (and will also be available in the electronic edition of ApJ

    Characterizing the Chemistry of the Milky Way Stellar Halo: Detailed Chemical Analysis of a Metal-Poor Stellar Stream

    Get PDF
    We present the results of a detailed abundance analysis of one of the confirmed building blocks of the Milky Way stellar halo, a kinematically-coherent metal-poor stellar stream. We have obtained high resolution and high S/N spectra of 12 probable stream members using the MIKE spectrograph on the Magellan-Clay Telescope at Las Campanas Observatory and the 2dCoude spectrograph on the Smith Telescope at McDonald Observatory. We have derived abundances or upper limits for 51 species of 46 elements in each of these stars. The stream members show a range of metallicity (-3.4 < [Fe/H] < -1.5) but are otherwise chemically homogeneous, with the same star-to-star dispersion in [X/Fe] as the rest of the halo. This implies that, in principle, a significant fraction of the Milky Way stellar halo could have formed from accreted systems like the stream. The stream stars show minimal evolution in the alpha or Fe-group elements over the range of metallicity. This stream is enriched with material produced by the main and weak components of the rapid neutron-capture process and shows no evidence for enrichment by the slow neutron-capture process.Comment: v2: Removed references to M15 after learning that the source kinematic data for M15 were incorrect in an earlier paper. M15 is not related to this stream. (ApJ, accepted; 31 pages, 18 figures, 11 tables

    Precise radial velocities of giant stars. III. Spectroscopic stellar parameters

    Full text link
    Context: A radial velocity survey of about 380 G and K giant stars is ongoing at Lick observatory. For each star we have a high signal to noise ratio template spectrum, which we use to determine spectroscopic stellar parameters. Aim: The aim of this paper is to present spectroscopic stellar parameters, i.e. effective temperature, surface gravity, metallicity and rotational velocity for our sample of G and K giant stars. Methods: Effective temperatures, surface gravities and metallicities are determined from the equivalent width of iron lines. Rotational velocities are determined from the full width at half maximum (FWHM) of moderate spectral lines. A calibration between the FWHM and total broadening (rotational velocity and macro turbulence) is obtained from stars in common between our sample and the sample from Gray (1989). Results: The metallicity we derive is essentially equal to the literature values, while the effective temperature and surface gravity are slightly higher by 56 K and 0.15 dex, respectively. Our rotational velocities are comparable with the ones obtained by Gray (1989), but somewhat higher than the ones obtained by de Medeiros & Mayor (1999), consistent with the different diagnostics used. Conclusions: We are able to determine spectroscopic stellar parameters for about 380 G and K giant stars in a uniform way (112 stars are being analysed spectroscopically for the first time). For stars available in the literature, we find reasonable agreement between literature values and values determined in the present work. In addition, we show that the metallicity enhancement of companion hosting stars might also be valid for giant stars, with the planet-hosting giants being 0.13 +/- 0.03 dex (i.e. 35 +/- 10%) more metal-rich than our total sample of stars.Comment: 16 pages, 8 figures, 4 tables, accepted for publication by Astronomy and Astrophysic

    Abundance Patterns in the Draco, Sextans and Ursa Minor Dwarf Spheroidal Galaxies

    Get PDF
    The Keck I telescope has been used to obtain HIRES spectra for red giants belonging to the Draco, Sextans and Ursa Minor dwarf spheroidal (dSph) galaxies. An analysis of these spectra is presented, along with abundance ratios for more than 20 elements. The resulting database of element abundances for 17 stars is the most extensive yet assembled for stars in dSph environments. Our main findings are summarized as follows: (1) There is unambiguous evidence for a large internal spread in metallicity in all three galaxies: our program stars span a range of [Fe/H] = 1.53, 1.40 and 0.73 dex in Draco, Sextans and Ursa Minor, respectively. (2) The abundance patterns among the dSph stars are remarkably uniform, suggesting that all three galaxies have similar nucleosynthetic histories. (3) A comparison of the measured abundance ratios for our sample of dSph stars with published values for Galactic halo and disk field stars suggests that the dSph galaxies have 0.02 < [alpha/Fe] < 0.13 dex, whereas the halo field star sample has [alpha/Fe] ~ 0.28 dex over the same range in metallicity. (4) The most metal-rich dSph stars in our sample have [Y/Fe] abundances which are significantly lower than those measured for halo field stars of similar metallicity, while the measured [Ba/Eu] ratios for the dSph stars suggest that the early chemical evolution of these galaxies was dominated by the r-process. Taken together, these results suggest that the Galactic halo is unlikely to have assembled, in its entirety, through the disruption of dwarf galaxies similar to the low-luminosity dSphs studied here. (ABRIDGED).Comment: 24 pages, 8 postscript figures (including 6 color figures). Accepted for publication in the Astrophysical Journa

    Simply imagining sunshine, lollipops and rainbows will not budge the bias: The role of ambiguity in interpretive bias modification

    Get PDF
    Imagery-based interpretive bias modification (CBM-I) involves repeatedly imagining scenarios that are initially ambiguous before being resolved as either positive or negative in the last word/s. While the presence of such ambiguity is assumed to be important to achieve change in selective interpretation, it is also possible that the act of repeatedly imagining positive or negative events could produce such change in the absence of ambiguity. The present study sought to examine whether the ambiguity in imagery-based CBM-I is necessary to elicit change in interpretive bias, or, if the emotional content of the imagined scenarios is sufficient to produce such change. An imagery-based CBM-I task was delivered to participants in one of four conditions, where the valence of imagined scenarios were either positive or negative, and the ambiguity of the scenario was either present (until the last word/s) or the ambiguity was absent (emotional valence was evident from the start). Results indicate that only those who received scenarios in which the ambiguity was present acquired an interpretive bias consistent with the emotional valence of the scenarios, suggesting that the act of imagining positive or negative events will only influence patterns of interpretation when the emotional ambiguity is a consistent feature

    Adaptation, coordination, and local interactions via distributed approachability

    Get PDF
    This paper investigates the relation between cooperation, competition, and local interactions in large distributed multi-agent systems. The main contribution is the game-theoretic problem formulation and solution approach based on the new framework of distributed approachability, and the study of the convergence properties of the resulting game model. Approachability theory is the theory of two-player repeated games with vector payoffs, and distributed approachability is here presented for the first time as an extension to the case where we have a team of agents cooperating against a team of adversaries under local information and interaction structure. The game model turns into a nonlinear differential inclusion, which after a proper design of the control and disturbance policies, presents a consensus term and an exogenous adversarial input. Local interactions enter in the model through a graph topology and the corresponding graph-Laplacian matrix. Given the above model, we turn the original questions on cooperation, competition, and local interactions, into convergence properties of the differential inclusion. In particular, we prove convergence and exponential convergence conditions around zero under general Markovian strategies. We illustrate our results in the case of decentralized organizations with multiple decision-makers

    CoRoT 105906206: a short-period and totally eclipsing binary with a Delta Scuti type pulsator

    Full text link
    Eclipsing binary systems with pulsating components allow the determination of several physical parameters of the stars, such as mass and radius, that, when combined with the pulsation properties, can be used to constrain the modeling of stellar interiors and evolution. Hereby, we present the results of the study of CoRoT 105906206, an eclipsing binary system with a pulsating component located in the CoRoT LRc02 field. The analysis of the CoRoT light curve was complemented by high-resolution spectra from the Sandiford at McDonald Observatory and FEROS at ESO spectrographs, which revealed a double-lined spectroscopic binary. We used an iterative procedure to separate the pulsation-induced photometric variations from the eclipse signals. First, a Fourier analysis was used to identify the significant frequencies and amplitudes due to pulsations. Second, after removing the contribution of the pulsations from the light curve we applied the PIKAIA genetic-algorithm approach to derive the best parameters that describe the orbital properties of the system. The light curve cleaned for pulsations contains the partial eclipse of the primary and the total eclipse of the secondary. The system has an orbital period of about 3.694 days and is formed by a primary star with mass M1 = 2.25 +/- 0.04 solar masses, radius R1 = 4.24 +/- 0.02 solar radii, and effective temperature Teff1 = 6750 +/- 150 K, and a secondary with M2 = 1.29 +/- 0.03 solar masses, R2 = 1.34 +/- 0.01 solar radii, and Teff2 = 6152 +/- 162 K. The best solution for the parameters was obtained by taking into account the asymmetric modulation observed in the light curve, known as the O'Connell effect, presumably caused by Doppler beaming. The analysis of the Fourier spectrum revealed that the primary component has p-mode pulsations in the range 5-13 c/d, which are typical of Delta Scuti type stars.Comment: 11 pages, 8 figures, 3 table
    • …
    corecore