We present the results of a detailed abundance analysis of one of the
confirmed building blocks of the Milky Way stellar halo, a
kinematically-coherent metal-poor stellar stream. We have obtained high
resolution and high S/N spectra of 12 probable stream members using the MIKE
spectrograph on the Magellan-Clay Telescope at Las Campanas Observatory and the
2dCoude spectrograph on the Smith Telescope at McDonald Observatory. We have
derived abundances or upper limits for 51 species of 46 elements in each of
these stars. The stream members show a range of metallicity (-3.4 < [Fe/H] <
-1.5) but are otherwise chemically homogeneous, with the same star-to-star
dispersion in [X/Fe] as the rest of the halo. This implies that, in principle,
a significant fraction of the Milky Way stellar halo could have formed from
accreted systems like the stream. The stream stars show minimal evolution in
the alpha or Fe-group elements over the range of metallicity. This stream is
enriched with material produced by the main and weak components of the rapid
neutron-capture process and shows no evidence for enrichment by the slow
neutron-capture process.Comment: v2: Removed references to M15 after learning that the source
kinematic data for M15 were incorrect in an earlier paper. M15 is not related
to this stream. (ApJ, accepted; 31 pages, 18 figures, 11 tables