The orbital angular momentum of a close-orbiting giant planet can be
sufficiently large that, if transferred to the envelope of the host star during
the red giant branch (RGB) evolution, it can spin-up the star's rotation to
unusually large speeds. This spin-up mechanism is one possible explanation for
the rapid rotators detected among the population of generally slow-rotating red
giant stars. These rapid rotators thus comprise a unique stellar sample
suitable for searching for signatures of planet accretion in the form of
unusual stellar abundances due to the dissemination of the accreted planet in
the stellar envelope. In this study, we look for signatures of replenishment in
the Li abundances and (to a lesser extent) 12C/13C, which are both normally
lowered during RGB evolution. Accurate abundances were measured from high
signal-to-noise echelle spectra for samples of both slow and rapid rotator red
giant stars. We find that the rapid rotators are on average enriched in lithium
compared to the slow rotators, but both groups of stars have identical
distributions of 12C/13C within our measurement precision. Both of these
abundance results are consistent with the accretion of planets of only a few
Jupiter masses. We also explore alternative scenarios for understanding the
most Li-rich stars in our sample---particularly Li regeneration during various
stages of stellar evolution. Finally, we find that our stellar samples show
non-standard abundances even at early RGB stages, suggesting that initial
protostellar Li abundances and 12C/13C may be more variable than originally
thought.Comment: Accepted for publication in the Astrophysical Journal. 29 pages in
emulateapj format, including 16 figures and 12 tables. Tables 4 and 8 are
provided in their entirety as plain text ancillary files (and will also be
available in the electronic edition of ApJ