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Abstract

This paper investigates the relation between cooperation, competition, and local interactions in large distributed multi-agent
systems. The main contribution is the game-theoretic problem formulation and solution approach based on the new framework
of distributed approachability, and the study of the convergence properties of the resulting game model. Approachability
theory is the theory of two-player repeated games with vector payoffs, and distributed approachability is here presented for
the first time as an extension to the case where we have a team of agents cooperating against a team of adversaries under local
information and interaction structure. The game model turns into a nonlinear differential inclusion, which after a proper design
of the control and disturbance policies, presents a consensus term and an exogenous adversarial input. Local interactions enter
in the model through a graph topology and the corresponding graph-Laplacian matrix. Given the above model, we turn the
original questions on cooperation, competition, and local interactions, into convergence properties of the differential inclusion.
In particular, we prove convergence and exponential convergence conditions around zero under general Markovian strategies.
We illustrate our results in the case of decentralized organizations with multiple decision-makers.

Key words: repeated games; approachability; differential games; robust control; network flow.

1 Introduction

Cooperation, competition, and local interactions are
three main co-existing elements in large distributed
multi-agent systems with humans in the loop, see
Fig. 1. The state of a decision-maker is captured by a
time-varying abstract entity, which contains aggregate
information on his past decisions and those of a sub-
set of other decision-makers around him, as well as his
cumulative or average payoff.

In abstract terms, cooperation refers to the capability
of the decision-makers to make decisions to coordinate
their states. The decision-makers try to reach consensus
by exhibiting reciprocal attraction forces whichmay lead
them to converge to a consensus equilibrium, see [15]
and references therein.

By competition we refer to the capabilities of the
decision-makers to let the collective state, a vector which
involves the states of all the decision-makers, converge
to a preassigned set or equilibrium point despite the

Email address: d.bauso@sheffield.ac.uk (Dario Bauso).

Cooperation

Local
interactions

Competition

Distributed
approachability

Fig. 1. Three dimensions of distributed decision making re-
framed within distributed approachability.

presence of disturbances. A natural way to deal with
such a scenario is via approachability theory, whose
traditional formulation involves only two players, the
decision-maker (player 1 or row player) and the adver-
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sarial disturbance (player 2 or column player) [8]. The
two players play repeatedly over time in a continuous-
or discrete-time setting, and the outcome of the game
at any time is a vector payoff. Both players try to influ-
ence the evolution of the average payoff. Existing results
show that the approachability problem can be turned
into a differential game in which the average payoff
appears as the (collective) state of the game [6,7,16].
In particular player 1 plays to make the average payoff
converge to a preassigned set, while player 2 tries to
contrast him. Equivalence of Blackwell Approachability
and No-Regret Learning is studied in [1]. A dynamic
programming approach to calculate approachable sets
is presented in [14]. Approachability in Stackelberg
Stochastic Games is investigated in [13]. Convergence
of the cumulative payoff rather than the average implies
some variations of the conditions which are formalized
in the context of attainability in two-player reapeated
games with vector payoffs, see e.g. [4] and [3, Ch.11].
The distributed approachability problem that we for-
mulate here assumes that player 1 is indeed made by
a team of agents whose cooperation results in attrac-
tion forces against a team of adversarial disturbances,
referred to as player 2, which exhibit external forces.

Local Coordination captures the idea that the decision-
makers have i) local information, namely they know only
some state components, and ii) local influence, namely
their decisions influence only some state components.
To model local coordination we refer to the concept of
distributedMarkovian or state-feedback control policies.
Back to the approachability interpretation, the state of
the decision-maker is the subset of payoff components he
can monitor and control. As it will be clear later on, the
term distributed approachability is here used to address
such a concept. This term has already appeared in [2] in
the context of coalitional games.

Contribution. As main contribution this paper builds
a mathematical model involving each of the above di-
mensions: cooperation, competition, and local interac-
tions. To capture competition the model takes the form
of a distributed approachability problem, thus depart-
ing in an original way from the traditional two-player
approachability formulation. A further contribution is
in that the model links in an original way to a stylized
model in the literature of decentralized organizations
thus contributing to the cross-fertilization of engineer-
ing and social science.

Building on existing results [6,7,16], which show that an
approachability problem can be turned into a differential
game, the game is ultimately transformed into a nonlin-
ear differential inclusion describing the continuous-time
evolution of the cumulative or average payoff. Here, the
distributed control involves the mixed actions of all the
decision-makers (player 1) and the distributed distur-
bance is the mixed actions of all adversaries (player 2).

The decision-makers coordinate to drive the vector pay-
off to a preassigned set against the action of the adver-
saries. Nonlinearity is due to bounds on controls and dis-
turbances. Given such a system, we look at equilibrium
points, which represent conditions under which the at-
traction forces counterbalance the external ones.

We show that cooperation results in a consensus term
in the differential inclusion which describes the attrac-
tion forces. Under such forces the states of the decision-
makers tend to get closer one to each other.

Competition takes the form of an exogenous signal. In
other words, the adversary tries to attract the local
states by exhibiting some centrifugal force.

Local interaction enters in the model through a graph
topology. We study the influence of such topology both
on the stationary solution and on the transient dynam-
ics. The graph topology appears in the consensus term,
through the graph-Laplacian matrix.

Given the above model, we can turn the original ques-
tions on cooperation, competition, and local interac-
tions, into convergence properties of the differential in-
clusion. In particular, we prove convergence and expo-
nential convergence conditions around zero under gen-
eral Markovian strategies using approachability theorem
by Blackwell. We observe that when we use distributed
Markovian strategies, we obtain a robust consensus dy-
namics and for such a dynamics we study the correspond-
ing convergence properties.

The main assumption is in the form of set inclusion, and
represents properties of the action sets of the game. This
assumption is borrowed from the literature on robust
control of network systems [9,10].

To place the contribution of this paper in proper con-
text, we illustrate our results in the case of decentralized
organizations with multiple decision-makers that must
perform n specialized tasks [11]. The decision-makers,
each one associated to a single task, choose the levels of
adaptation and coordination. A higher level of adapta-
tion implies that the workers show higher flexibility to
adapt their tasks. A higher level of coordination entails
an increase in the communication between workers. The
performance of the organization depends on: i) how well
each task is adapted to specific market conditions, op-
erational conditions, and consumers’ needs and ii) how
well all tasks are coordinated with each other.

This paper is organized as follows. In Section 2 we intro-
duce approachability and distributed approachability. In
Section 3 we turn the game into a dynamical system.
In Section 4 we provide the main results on convergence
and exponential convergence. In Section 5 we discuss the
results in the context of decentralized organizations. In
Section 6 we provide conclusions.
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2 Distributed approachability

In this section, we first introduce the traditional ap-
proachability setting involving two players and a
continuous-time repeated game with vector payoffs.
Then, we formulate the problem at hand in the form of
a distributed approachability problem with a team of
decision-makers playing against a team of adversaries.

2.1 Approachability

The traditional approachability setting involves a two-
player repeated game with vector payoffs, which we refer
to as Γ. The set of players is N = {1, 2}, and the finite
set of actions of each player i is Ai. The instantaneous
payoff is given by a biaffine function g : A1 ⇥A2 ! R

m,
where m is a natural number.

We extend g to the set of mixed actions pairs, ∆(A1)⇥
∆(A2), in a bilinear fashion. The one-shot vector-payoff
game (∆(A1),∆(A2), u) has compact convex action sets
and is denoted by G.

The game Γ is played in continuous-time over the time
interval [0,1). We assume that the players use non-
anticipative behavior strategies, according to the defini-
tion provided below.

Denote by Ci the set of all actions of player i, that is,
the set of all measurable functions from the time space,
[0,1), to player i’s mixed actions. That is,

Ci := {ai : [0,1) ! ∆(Ai), ai is measurable} .

Definition 2.1 A function σi = σi[·] : C−i ! Ci is a
non-anticipative behavior strategy for player i, if

a−i(s) = a0−i(s) 8s 2 [0, t]

=) σi[a−i](s) = σi[a
0
−i](s) 8s 2 [0, t].

Every pair of strategies σ = (σ1, σ2) uniquely determines
a play path (a[σ](t))t2R+

. The payoff (vector) up to time
t associated with the pair of strategies σ is given by

x[σ](t) =

Z t

0

g (a[σ](s)) ds 2 R
m. (1)

The integral in (1) is the cumulative payoff up to time t.

We also define the average payoff up to time t as

x̄[σ](t) =
1

t

Z t

0

g (a[σ](s)) ds 2 R
m. (2)

2.2 Distributed setting

Let us depart from the traditional setting by introducing
the distributed element in our problem. To do this, let
the set of actions be given by

A1 = {a
(1)
1 , . . . , a

(v)
1 }, A2 = {a

(1)
2 , . . . , a

(r)
2 },

where a
(i)
1 2 R

p for all i = 1, . . . , v are the vertices of a

hyperbox denoted by U in R
p. Likewise, a

(j)
2 2 R

q for
all j = 1, . . . , r are the the vertices of a hyperbox in R

q.
Thus, ∆(A1) ⇢ R

p and ∆(A2) ⇢ R
q. The two-player

a
(i)
1 /a

(j)
2 a

(1)
2 . . . a

(r)
2

a
(1)
1 Ba

(1)
1 −Da

(1)
2 . . . Ba

(1)
1 −Da

(r)
2

...
...

...

a
(v)
1

Table 1
Two-player game with vector payoffs: A = [Aij ].

game is characterized by the following payoff matrix, for
all i = 1, . . . v, j = 1, . . . , r

A = [Aij ], Aij = Ba
(i)
1 −Da

(j)
2 ,

where B 2 R
m⇥p and D 2 R

m⇥q are given matrices.

Table 1 displays the two-player game and the matrix A
with multi-dimensional entries Aij in R

m. In a central-
ized setup, at any time t, players 1 and 2 pick vertices of
the hyperboxes U ⇢ R

p and W ⇢ R
q. In the distributed

setup we consider here, the action of player 1 is the path
u (see it as a path or as a vector) resulting from differ-
ent agents selecting simultaneously orthogonal segments
u1, . . . , up in the hyperbox U .

a
(1)
1 a

(i)
1

a
(v)
1

a
(1)
2

a
(r)
2

a
(j)
2

Fig. 2. Sets of actions A1 = {a
(1)
1 , . . . , a

(v)
1 } and

A2 = {a
(1)
2 , . . . , a

(r)
2 }. In a centralized setup, at any time

t, players 1 and 2 pick vertices of hyperboxes U ⊂ R
p and

W ⊂ R
q, respectively.

Denote a1 = [a11, . . . , a1v]
T and a2 = [a21, . . . , a2r]

T .
Introduce the mapping ∆(A1)⇥∆(A2) ! U ⇥W, such
that (a1, a2) 7! (u,w) where

u =
Pv

i=1 a1ia
(i)
1 = [u1, . . . , up]

T ,

w =
Pr

j=1 a2ja
(j)
2 = [w1, . . . , wq]

T .
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The instantaneous payoff at time s is given by

g (a[σ](s)) =
Pv

i=1

Pr
j=1 a1ia2j(Ba

(i)
1 −Da

(j)
2 )

=
Pv

i=1 a1i(Ba
(i)
1 )−

Pr
j=1 a2j(Da

(j)
2 )

= B
⇣

Pv
i=1 a1ia

(i)
1

⌘

−D
⇣

Pr
j=1 a2ja

(j)
2

⌘

= Bu−Dw
.
= ĝ(u,w).

(3)

Assume that player 1 involves p distinct agents each one
controlling one component of u. In other words, agent i
controls ui, which in turn has effect only on ĝ(·)j and
ĝ(·)k, these being the jth and kth component of the
vector-valued function ĝ(·). In addition, agent i knows
only xj(t) and xk(t) for any pair j, k = 1, . . . ,m at time t.
Therefore we set ui = f(xj , xk), where f(·) is a generic
function which needs to be designed.

Let a graph G = (V,E) be given, where V is the set
of vertices and E is the set of edges. The interaction
between the control ui and the states xj(t) and xk(t) is
illustrated in Fig. 3. Matrix B is the incidence matrix of

ui = f(xj , xk)xj
xk

Fig. 3. Graph G = (V,E) illustrating the distributed nature
of the problem. Component ui is function of only xj(t) and
xk(t), and influences only ĝ(·)j and ĝ(·)k.

the above graph.

We can rewrite the cumulative payoff as

x[σ](t) =
R t

0
g (a[σ](s)) ds

=
R t

0
ĝ (u(s), w(s)) ds

=
R t

0
(Bu(s)−Dw(s))ds 2 R

m.

(4)

Likewise, the average payoff up to time t is

x̄[σ](t) = 1
t

R t

0
g (a[σ](s)) ds

= 1
t

R t

0
ĝ (u(s), w(s)) ds

= 1
t

R t

0
(Bu(s)−Dw(s))ds 2 R

m.

(5)

Both the cumulative or average payoff represent the col-
lective state of our system.

3 Uncertain dynamical system

In this section, we build on existing results to turn the
repeated game into an uncertain dynamical system or
differential game if we review the control as one player
and the disturbance as the opponent. Let us consider
the following state-feedback control u(t) = φ(z(t)). Let
us rescale the time window using t = eτ and take z(τ) =
x̄(eτ ) and differentiate the above expression of z(τ) with
respect to τ . Then, for fixed strategy u(τ) = φ(z(τ)),
the dynamics is a differential inclusion of type:

ż(τ) 2 F (z) := {ξ 2 R
m|

ξ = ĝ(u(z), w)− z, 8w 2 W}.
(6)

Note that after rescaling the time window, we have

z(0) = x̄(1) =

Z 1

0

ĝ(u(z(s), s), w(s))ds 2 R
m.

Given a compact set Λ 2 R
m and z 2 R

m we let ΠΛ(z) =
{y 2 Λ| dist2(z,Λ) = kz − yk2 = hz − y, z − yi}.

Theorem 3.1 (Approachability) Let Λ 2 R
m be a

compact set, r > 0 and Z = {z 2 R
m : dist(z,Λ) < r}.

If for all z 2 Z \ Λ there exists y 2 ΠΛ(z) such that

hz + v − y, z − yi  0, 8v 2 F (z), (7)

then the set Λ is approachable.

Proof. Let z(t), t 2 [0, T ] be solution of (6) and let
δ(t) = kz(t)− yk2. Let f(ĝ(u,w), z) = −z + Bu−Dw.
We have

δ̇(τ) = 2hf(p(u,w), x), z(τ)− yi

= 2hĝ(u,w)− z, z(τ)− y(τ)i

= 2hĝ(u,w)− z(τ) + z(τ)− y(τ), z(τ)− y(τ)i

−2hz(τ)− y(τ), z(τ)− y(τ)i.

(8)

From (7) we have that

hĝ(u,w)−z(τ)+z(τ)−y(τ), z(τ)−y(τ)i < 0, 8 t 2 (0, T ],

which implies

δ̇(t)  −2hz(τ)− y(τ), z(τ)− y(τ)i = −2δ(t).

By integration of the above inequality, one obtains that

kz(τ)− y(τ)k  kz(0)− z(τ)ke−τ ,

and therefore Λ is approachable with exponential rate.
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y(τ) A

H−

H+

z(τ)

z(τ) + v

F (z)

Fig. 4. Geometric illustration of the Blackwell’s Approacha-
bility Principle.

A graphical illustration of condition (7) is as in Fig. 4.
There, we have set A, which is the set that the controller
wishes to approach. Let y(t) be the projection of x(t)
onto set A. The supporting hyperplane (dashed line) to
A at point y(τ) is the set of points satisfying

H = {ζ 2 R
m| hζ − y(τ), z(τ)− y(τ)i = 0}.

Given the supporting hyperplane H, let us denote by
H+ and H− the positive and negative half-spaces. That
is to say, that for H+ and H− it holds

H+ = {ζ 2 R
m| hζ − y(τ), z(τ)− y(τ)i ≥ 0},

H− = {ζ 2 R
m| hζ − y(τ), z(τ)− y(τ)i  0}.

Condition (7) essentially states that point z(τ)+v must
lie in the opposite halfspace than the one containing
z(τ), for any v 2 F (z).

4 Distributed convergence

This section contains the main results of this paper.
We first study approachability of sets of equilibrium
points in the case where both u and w are state-feedback
strategies. Then we investigate approachability of re-
gions around zero under the worst-case realization of w.

4.1 Approachability of equilibrium sets

Wewish to study approachability of equilibrium sets un-
der the assumption that both u and w are obtained from
state-feedback strategies. In other words, approachable
sets are of the form Λ := {z| ż = 0} for given state-
feedback control u(t) = φ(z(t)) and disturbance w(t) =

φ̂(z(t)).

Remark 4.1 All the results in this section hold in the
special case where w(t) = φ̂(z(t)) = ω 2 W where ω is
any constant vector.

For each equilibrium point z in Λ we have that the set
F (z) coincides with the zero point,

ż 2 F (z) = ĝ(u,w)− z = ĝ(φ(z), φ̂(z))− z

= Bφ(z)−Dφ̂(z)− z = 0.
(9)

We can view the term Bφ(z) as the internal (attraction)

force, and Dφ̂(z) as the external force. At the equilib-
rium z is balancing both the internal and the external
force. This value for z represents a compromise between
internal coordination and adaptation to external condi-
tions.

In the following, we consider equilibrium sets that are
convex, namely, the set

Λ := {z|Bφ(z)−Dφ̂(z)− z = 0}

is such that given ζ1 and ζ2 in Λ, we have that ζ̄ =
θζ1 + (1 − θ)ζ2 for any 0 < θ < 1 is also in Λ. This
corresponds to saying that

Bφ(ζ1)−Dφ̂(ζ1)− ζ1 = 0

Bφ(ζ2)−Dφ̂(ζ2)− ζ2 = 0

)

) Bφ(ζ̄)−Dφ̂(ζ̄)− ζ̄ = 0.

(10)

The following theorem restates the approachability con-
ditions in the case of state-feedback strategies.

Theorem 4.1 (Approach. feedback strategies)
Let Λ 2 R

m be a compact equilibrium set, i.e.,
Λ := {z| ż = 0} for given state-feedback control

u(t) = φ(z(t)) and disturbance w(t) = φ̂(z(t)). Let r > 0
and Z = {z 2 R

m : dist(z,Λ) < r}. Assume that for all
z 2 Z \ Λ there exists y 2 ΠΛ(z) such that

hv, z − yi  0, 8v 2 F (z). (11)

Then the set Λ is approachable.

Proof. Let z(t), t 2 [0, T ] be solution of (6). Also, let
δ(t) = kz(t)− yk2. Let f(ĝ(u,w), z) = −z + Bu−Dw.
We have

δ̇(τ) = 2hf(p(u,w), x), z(τ)− yi

= 2hĝ(u,w)− z, z(τ)− y(τ)i  0.
(12)

From (11) we have that

hĝ(u,w)− z(τ), z(τ)− y(τ)i < 0, 8 t 2 (0, T ],

which implies
δ̇(t)  0.

5



We know that the set of points z for which δ̇(t) = 0 is
the set of equilibrium points in Λ. Actually, any point z
in Λ is such that

ż = ĝ(u,w)− z = ĝ(φ(z), φ̂(z))− z

= Bφ(z)−Dφ̂(z)− z = 0.
(13)

Then, from LaSalle’s Invariance Principle we know that
any trajectory originating in Z converges to the largest
invariant set in Λ which is Λ itself.

Condition (11) is more general than (7) but does not
guarantee exponential convergence as for (7). This is
established in the next theorem.

Theorem 4.2 Condition (7) implies (11) but not vice
versa.

Proof. ()) Let us first prove that (7) implies (11). As-
sume that it holds

hv + z − y, z − yi  0, 8v 2 F (z). (14)

Then we have

hv, z − yi+ hz − y, z − yi  0, 8v 2 F (z), (15)

which in turn implies

hv, z − yi  −hz − y, z − yi  0, 8v 2 F (z).

(( not true) To show that (11) does not imply (7), con-
sider a big enough scalar κ > 0. Assume that

−κ  hv, z − yi  0, 8v 2 F (z).

Then, for any z such that hz − y, z − yi > κ we have

hv + z − y, z − yi = hv, z − yi+ hz − y, z − yi

≥ hv, z − yi+ κ ≥ 0, 8v 2 F (z).
(16)

This concludes the proof.

In the following, we show that Theorem 4.5 is useful
to study conditions for distributed approachability. A
state-feedback control strategy for which the set of equi-
librium points Λ is compact, is the linear saturated con-
trol [5]:

u(τ) = sat



−
BT

γ
z(τ)

]

, γ > 0, (17)

where the saturation function sat[.] : Rp ! R
p is defined

componentwise as follows

ui = sat[ξi]
.
=

8

>

>

<

>

>

:

u−

i if ξi < u−

i ,

ξi if u−

i  ξi  u+
i ,

u+
i if ξi > u+

i .

In addition, consider the set of equilibrium points

Λγ
.
=

n

z| Bsat



−
BT

γ
z

]

= Dφ̂(z) + z
o

.

The following assumption establishes a set inclusion con-
dition involving the bounding sets of state, control, and
disturbance. Such assumption is relevant to approacha-
bility of equilibrium points as established next.

Assumption 1 Matrix B 2 R
m⇥p is full row rank and

set W is in the interior of BU , that is,

DW + Λγ ⇢ int{BU}. (18)

Theorem 4.3 Under Assumption 1, the control (17),
with arbitrary γ > 0 is such that z(τ) ! Λγ .

Proof. Denote by y = ΠΛγ
(x), where ΠΛγ

(x) is the

projection of x onto set Λγ . Let us denote ξ = −BT z/γ
and ξ̄ = −BT y/γ. Condition (11) becomes

hv, z − yi =
D

Bsat
h

−BT

γ
z
i

−Dw − z, z − y
E

= γ ·
D

B
γ

⇣

sat
h

−BT

γ
z
i

− sat
h

−BT

γ
y
i⌘

, z − y
E

=
D

sat
h

−BT

γ
z
i

− sat
h

−BT

γ
y
i

, γBT

γ
(z − y)

E

= −γhsat[ξ]− sat[ξ̄], ξ − ξ̄i

= −γ
Pm

i=1 (ξi − ξ̄i)
(

sat[ξi]− sat[ξ̄i]
)

 0.

(19)

The last inequality derives from ξ̄i being in the interior
of interval [u−

i , u
+
i ], which in turn derives from Assump-

tion 1.

Under control (17), dynamics (6) becomes

ż(τ) 2 F (z) := {ξ 2 R
m|

ξ = Bsat
h

−BT

γ
z
i

−Dφ̂(z)− z}.
(20)

Our idea is to rewrite the above dynamics in the follow-
ing polytopic form

ż(τ) 2 F (z) := {ξ 2 R
m|

ξ = L(z)z −Dφ̂(z)− z},
(21)
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where the time varying matrices L(z(t)) are expressed
as convex combinations of 2p matrices Lj , j = 1, . . . , 2p.
More precisely the expressions for L(z(t)) are

L(z(t)) =

2p
X

j=1

σj(z(t))Lj ,

2p
X

j=1

σj(t) = 1. (22)

The procedure to compute matrices Lj ’s is borrowed
from [12] and recalled below. For the control, let us
rewrite

ui = θi(z)(−Ki•z),

where θi(z) are the “degree of saturation” given by

θi(z) =

8

>

>

<

>

>

:

u
−

i

−Ki•z
if −Ki•z < u−

i ,

1 if u−

i  −Ki•z  u+
i ,

u
+

i

−Ki•z
if −Ki•z > u+.

(23)

Let θ = [θ1, . . . , θp] be a vector whose components θi
are such that 0  θi  1 and represent lower bounds
of θi(z(t)), for t ≥ 0. Also let ψθ = [ψθ

1 , . . . , ψ
θ
p] with

ψθ
i =

u
+

i

θ
i

and the associated portion of the state space

(recall the assumption u+
i = −u−

i )

S(ψθ) = {z 2 R
m : −ψθ  −Kz  ψθ}.

Consider now the 2p vectors γj 2 {1, θ1}⇥ . . .⇥{1, θp},
with j = 1, . . . , 2p. In other words, γj is a p component
vector with ith component γji taking value 1 or θi. Then,
each matrix Aj can be expressed as

Lj = −Bdiag(γj)K = −Bdiag(γj)
BT

γ
.

Roughly speaking each vector γj stores the minimum
and or maximum degree of saturation of all controls.

Now partition S(ψθ) in subsets X such that for each of
them we can define the subset JX ✓ {1, . . . , 2p} of in-
dices j such that, for all z 2 X, L(z) can be expressed
as a convex combination of Lj ’s with j 2 JX . This com-
pletes the procedure.

4.2 Attainability

In this section we consider two extensions of the above
results. First we focus on attainability rather than ap-
proachability, and then we generalize the structure of
the state-feedback function by considering the following
function, for all arc (j, k) 2 E:

ui = min(αjk[zj − zk]+, u
+
i )

+max(αjk[zj − zk]−, u
−

i ),
(24)

where i is the index of the arc (j, k) 2 E according to
some ordered indexing inE, αjk are nonnegative weights
for all arcs (j, k) 2 E, and [zj−zk]+ denotes the positive
part of zj − zk. Note that when the αjk = 1

γ
then we

have the saturated function below. Let us rewrite (24)
in compact form as

u = φα(z) := min(A[∆z]+, u
+)

+max(A[∆z]−, u
−),

(25)

whereA is a p⇥p diagonal matrix with entries αjk for all
(j, k) 2 E in the main diagonal, ∆z in R

p is the vector
of state difference at the two extreme nodes of the each
arc, and all operators need to be interpreted component-
wise.

In the case of attainability the set of equilibrium points
is given by

Λα
.
=

n

z| Bφα(z) = Dφ̂(z)
o

.

The following assumption is in the form of set inclusion
and turns to be necessary and sufficient to attainability
as established in the next theorem.

Assumption 2 Matrix B 2 R
m⇥p is full row rank and

set W is in the interior of BU , that is,

DW ⇢ int{BU}. (26)

Theorem 4.4 Under Assumption 2, the control (25),
under an optimal α > 0 is such that z(τ) ! Λα.

Proof. We need to prove that there exists an optimal α
such that hv, z − yi < 0. This is true if we rewrite

infαhv, z − yi

= infα

D

Bφα(z)−Dφ̂(z), z − y
E

 infα supw

D

Bφα(z)−Dw, z − y
E

 0,

(27)

where the last inequality derives from Assumption 2.

4.3 Approachability of the origin

In this section, we study approachability of the origin
under the worst-case realization of the disturbance. To
this end, consider a generic hyperbox set C = {ζ 2
R

m| z−i  ζi  z+i }, where z−i and z+i are negative and
positive scalars respectively.

Equation (20) can be rewritten as

ż(τ) 2 F (z) := {ξ 2 R
m|

ξ = Bsat
h

−BT

γ
z
i

−Dw − z, 8w 2 W}.
(28)
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As the boundary of the set ∂C is nonsmooth, we can
approximate the set by introducing the following gauge
function.

For any positive integer p let the function σp : R ! R+

be defined as

σp(ζ) =

(

ζp if ζ  0,

0 if ζ > 0,

and consider a gauge function Ψp : Rm 7! R
+ defined as:

Ψp(z) =
p

v

u

u

t

n
X

i=1

σp

✓

zi

z+i

◆

+ σp

✓

zi

z−i

◆

.

Note that the unit ball

BΨp
(~0, 1) := {⇠ 2 R

m|Ψp(⇠)  1}

is included in C, i.e., BΨp
(~0, 1) ✓ C, and is such that

the boundary @BΨp
(~0, 1) is smooth (differentiable). Fur-

thermore @BΨp
(~0, 1) tends asymptotically to @C for in-

creasing p, and as such BΨp
(~0, 1) represents a good ap-

proximation of C. We show next that set BΨp
(~0, 1) is

approachable and discuss the approachability strategy.

It turns out that, a possible control strategy is one that
pushes the state along the anti-gradient direction of the
above function. More formally, if we denote by

Γi(zi) :=
1

z+i
σp−1

✓

zi

z+i

◆

+
1

z−i
σp−1

✓

zi

z−i

◆

,

the gradient for z 6= 0 can be expressed as

rΨp(z) = Ψp(z)
1−p[Γ1(z) Γ2(z) . . .Γn(z)]. (29)

Let the following set of equilibrium points be given:

Λ̂α :=
n

z| Bφα(z) = Dφ̂(z)
o

.

Consider the following assumption, which is a slight vari-
ation of Assumption 1.

Assumption 3 Matrix B 2 R
m⇥p is full row rank and

set W is in the interior of BU , that is,

DW + Λ̂α ⇢ int{BU}. (30)

Theorem 4.5 (Approach. with feedback strategies)
Let Assumption 3 hold. Let a generic hyperbox set
C = {⇣ 2 R

m| z−i  ⇣i  z+i } where z−i and z+i
are negative and positive scalars. Let r > 0 and
Z = {z 2 R

m : dist(z, C) < r}. Then the set C is
approachable.

Proof. Let z(t), t 2 [0, T ] be solution of (28). The un-
derlying idea of this proof is to show that for all z 2 Z\C
there exists Γ(z) such that the

hv,Γ(z)i < 0, 8v 2 F (z). (31)

Now, we have that the derivative of Ψ is given by

minα maxw2W Ψ̇(t) = minα maxw2WhrΨp(z), żi

= minα maxw2W Ψp(z)
1−phΓ(z), ż(t))i

= minα maxw2W Ψp(z(t))
1−p

·hΓ(z(t)), Bφα(z)−Dw − zi < 0.

From the above we have that (31) holds true. Now note
that the condition Ψp(z(t)) < 1 implies z 2 C and
as (32) implies that Ψp(z(t)) ! 0 then z(t) ultimately
reaches C as well.

5 Adaptation and coordination

Centralized organizations entail expensive communica-
tion in that one single decision-maker has to process big
data sets and coordinate multiple actions. One way to
overcome this issue is through decentralization and task
specialization. This consists in partitioning the project
into tasks and assign them to multiple agents [11]. De-
centralization in turn requires adaptation and coordina-
tion. By adaption we mean the capability to adapt to

• market conditions: the actual demand may be higher
or lower than forecasted;

• operational conditions: employees may be not avail-
able, or unexpected delays may occur;

• consumers’ needs: changing characteristics or needs
require the products to be continuously redesigned.

In such a scenario each agent must continuously adapt
its task to new instances and coordinate the changes
with the other agents.

As an example, imagine a large software to be developed
by a team of engineers. The first step is to decompose
the project in multiple tasks and to assign each task to a
different engineer. Think of the software as a proprietary
operating system having a task focusing on the process
manager, another task relating to the network access
and so forth. While each task has to be designed based
on the specific needs of the client, all tasks require to be
assembled in coherent whole.
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(a) Case I: G = (V,E) with probabil-
ity of formation of links h = 0.3.
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(b) Case II: G = (V,E) with proba-
bility of formation of links h = 0.6.

−30 −20 −10 0 10 20 30
−25

−20

−15

−10

−5

0

5

10

15

20

25

(c) Case III: G = (V,E) with proba-
bility of formation of links h = 0.99.

Fig. 5. Topologies

5.1 Numerical example

Consider a decentralized organization, in which a project
is decomposed in n tasks, and each task is assigned to
an agent. At each time, agents access local information
and adapt their tasks consequently. Local information
is modeled as an exogenous input w. Coordination is
possible via pairwise adjustments u and is visualized by
a network described by an incidence matrixB. Nodes are
agents, and links are communication channels. Ideally
the value of task j, which is indicated by zj , should be
as close as possible to that of task i, denoted by zi.

The project consists of n = 20 tasks. Iterations are T =
100. Consider a discrete time version of (20) given by

z(t+ dt) = z(t) + (−cLz(t) + bw(t))dt, (32)

where c is the coordination weight, and b is the adap-
tation weight. The parameters are as follows. The step
size dt = 0.01, the initial state value z(0) is generated
as a single uniformly distributed random number in the
interval (0, 1) by using the in-built MATLAB command
rand. The adaptation weight b = 1.5, 45.5, 15.5, while
the coordination weight c = 1, 1, 0.5 for the three sim-
ulation sets. For each simulation set, we consider three
cases, in which the communication graph is built by
fixing a probability of formation of links denoted by
h = 0.3, 0.6, 0.99, respectively. The exogenous input w
is an n-dimensional vector with components uniformly
distributed in the set {−1, 0, 1}. Figures 5a-5c display
the graphs in the three cases considered for each simu-
lation set. The three cases differ for the probability of
formation of links which is h = 0.3, 0.6, 0.99.

The first set of simulations highlights the dominant role
of coordination at the expense of adaptation due to an
increase in the number of links, which is around 6,12,
and 19 in the three cases. Figure 6 shows the time plot of
the task values z(t) in the three cases. The coordination
level increases from top to bottom. Thus, investing in
a better quality of internal communication benefits the
overall coordination capability of the organization.

2 4 6 8 10 12 14
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0.5

1

2 4 6 8 10 12 14
0

0.5

1

ta
s
k
s

2 4 6 8 10 12 14
0

0.5

1

time

Fig. 6. First set of simulations: time plot of the task values
z(t) in the three cases.

The second set of simulations points out how the role of
communication may be secondary when the cost of mis-
adaption dominates the cost of miscoordination. Actu-
ally, we now set b = 45.5 and c = 1 in (32), which means
that the cost of misadaption is much higher than the
cost of miscoordination. If this is the case, investing on
internal communication does not benefit much the orga-
nization. Figure 7 shows the time plot of the task values
z(t) in the three cases. The agents follow the exogenous
signal which leads to the formation of three clusters. The
approachable set is larger than in previous simulations.

Another scenario where investing on internal communi-
cation is not relevant is when the exogenous signal has
small volatility. In this case, the agents stick to a priori
coordination without compromising the overall coordi-
nation of the organization. This is captured in the third
set of simulations. We now set w almost constant and
equal to 0.5. Even if the cost of adaptation is higher than
the cost of coordination, which is obtained by setting
b = 15.5 and c = 0.5, the level of coordination is almost
the same for the three graphs. Figure 8 shows the time
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Fig. 7. Second set of simulations: time plot of the task values
z(t) in the three cases.

plot of the task values z(t) in the three cases. Though
the agents follow the exogenous signal, this leads to the
formation of one single cluster around 0.5. The set of
perfect coordination characterized by z = 1µ where µ is
a scalar is approachable in a distributed way.
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Fig. 8. Third set of simulations: time plot of the task values
z(t) in the three cases.

6 Conclusions

This paper has introduced distributed approachability
to accommodate cooperation, competition, and local in-
teraction in multi-agent systems. The advantage of such
a novel framework is that we can turn the original ques-
tions on cooperation, competition and local interactions,
into convergence properties of a differential inclusion de-
scribing the evolution of the collective state. In particu-
lar, we have provided convergence conditions under gen-

eral Markovian strategies. We have specialized our re-
sults to the case of decentralized organizations.
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