856 research outputs found

    Ridge top peats and paleolake deposits on Macquarie Island

    Get PDF
    Palynological analyses of two ridge top peat profiles on subantarctic Macquarie Island are presented and discussed. The profiles record Holocene vegetation changes In a small-scale mosaic pattern. Older records of island vegetation should be sought in valley and lake deposits. A preliminary account is given of several freshwater palaeolake deposits dating from the terminal Pleistocene and early Holocene

    Pleistocene uplift and palaeoenvironments of Macquarie Island: evidence from palaeobeaches and sedimentary deposits

    Get PDF
    Macquarie Island (54°30'S, 159°00'E) is an emergent part of the Macquarie Ridge Complex composed of ocean-floor rocks of Miocene age now 4000 m above the ocean floor. A number of landforms, including palaeobeaches now above sea level (a.s.l.)on Macquarie Island, were formed by marine erosion during uplift of the island. During the last Pleistocene period of low sea level (c. 20 ka) the island was three times larger than now. Thermoluminescence (TL) dating of two palaeobeaches indicates Pleistocene ages: 172 ± 40 ka for one at 100 m a.s.l. and 340 ± 80 ka for another at 263 m a.s.l. Matching the altitude sequence of palaeobeaches on Macquarie Island with the pattern of peaks in world sea level determined from deep sea cores allows an independent estimate of beach ages. Comparison of the altitude and sea level sequences most plausibly places the 100 m palaeobeach in Oxygen Isotope Stage 5e (130-125 ka) and the 263 m palaeobeach in Stage 9 (340-330 ka), matching reasonably with the TL dates. Other palaeobeaches at about 50 m and 170-190 m a.s.l. then correlate with high sea levels. We calculate an average rate of uplift forthe island of 0.8 mma-I . At this rate, 4000 m of Macquarie Ridge uplift would have taken about five million years and the top of the island may first have emerged some 700 to 600 ka. During the six Pleistocene glacial-interglacial cycles since then, there has been periglacial rather than glacial activity on cold uplands, but conditions suitable for vegetation of the present type persisted close to sea level

    Extracellular polymeric bacterial coverages as minimal area surfaces

    Full text link
    Surfaces formed by extracellular polymeric substances enclosing individual and some small communities of {\it Acidithiobacillus ferrooxidans} on plates of hydrophobic silicon and hydrophilic mica are analyzed by means of atomic force microscopy imaging. Accurate nanoscale descriptions of such coverage surfaces are obtained. The good agreement with the predictions of a rather simple but realistic theoretical model allows us to conclude that they correspond, indeed, to minimal area surfaces enclosing a given volume associated with the encased bacteria. This is, to the best of our knowledge, the first shape characterization of the coverage formed by these biomolecules, with potential applications to the study of biofilms.Comment: 4 pages, 9 figures. v2: minor changes. v3: Terminology changes and extra references included. v4: Final versio

    Vector boson pair production at the LHC

    Get PDF
    We present phenomenological results for vector boson pair production at the LHC, obtained using the parton-level next-to-leading order program MCFM. We include the implementation of a new process in the code, pp -> \gamma\gamma, and important updates to existing processes. We incorporate fragmentation contributions in order to allow for the experimental isolation of photons in \gamma\gamma, W\gamma, and Z\gamma production and also account for gluon-gluon initial state contributions for all relevant processes. We present results for a variety of phenomenological scenarios, at the current operating energy of \sqrt{s} = 7 TeV and for the ultimate machine goal, \sqrt{s} = 14 TeV. We investigate the impact of our predictions on several important distributions that enter into searches for new physics at the LHC.Comment: 35 pages, 14 figure

    Quantum flavor oscillations extended to the Dirac theory

    Full text link
    This report deals with the quantum theory of flavor oscillations in vacuum, extended to fermionic particles in the several subtle aspects of the first and second quantization theories. In this scenario, the use of the Dirac equation is required for a satisfactory evolution of fermionic mass-eigenstates since in the standard treatment of oscillations the mass-eigenstates are implicitly assumed to be scalars and, consequently, the spinorial form of neutrino wave functions is not included in the calculations. Within first quantized theories, besides flavor oscillations, chiral oscillations automatically appear when we set the dynamic equations for a fermionic Dirac-type particle. The left-handed chiral nature of created and detected neutrinos can be implemented in the first quantized Dirac theory in presence of mixing; the probability loss due to the changing of initially left-handed neutrinos to the undetected right-handed neutrinos can be obtained in analytic form. In the context of a causal relativistic theory of a free particle, one of the two effects should be present in flavor oscillations: (a) rapid oscillations or (b) initial flavor violation. Concerning second quantized approaches, a simple second quantized treatment exhibits a tiny but inevitable initial flavor violation without the possibility of rapid oscillations. Such effect is a consequence of an intrinsically indefinite but approximately well defined neutrino flavor. The violation effects are shown to be much larger than loop induced lepton flavor violation processes, already present in the standard model in the presence of massive neutrinos with mixing. The conclusions of this report lead to lessons concerning flavor mixing, chiral oscillations, interference between positive and negative frequency components of Dirac equation solutions, and the field formulation of quantum oscillations.Comment: 116 pages, 10 figures (The abstract was suppressed due to online title limitations of the abstract field. See the manuscript for obtaining the complete abstract

    TGF-b2 induction regulates invasiveness of theileria-transformed leukocytes and disease susceptibility

    Get PDF
    Theileria parasites invade and transform bovine leukocytes causing either East Coast fever (T. parva), or tropical theileriosis (T. annulata). Susceptible animals usually die within weeks of infection, but indigenous infected cattle show markedly reduced pathology, suggesting that host genetic factors may cause disease susceptibility. Attenuated live vaccines are widely used to control tropical theileriosis and attenuation is associated with reduced invasiveness of infected macrophages in vitro. Disease pathogenesis is therefore linked to aggressive invasiveness, rather than uncontrolled proliferation of Theileria-infected leukocytes. We show that the invasive potential of Theileria-transformed leukocytes involves TGF-b signalling. Attenuated live vaccine lines express reduced TGF-b2 and their invasiveness can be rescued with exogenous TGF-b. Importantly, infected macrophages from disease susceptible Holstein-Friesian (HF) cows express more TGF-b2 and traverse Matrigel with great efficiency compared to those from disease-resistant Sahiwal cattle. Thus, TGF-b2 levels correlate with disease susceptibility. Using fluorescence and time-lapse video microscopy we show that Theileria-infected, disease-susceptible HF macrophages exhibit increased actin dynamics in their lamellipodia and podosomal adhesion structures and develop more membrane blebs. TGF-b2-associated invasiveness in HF macrophages has a transcription-independent element that relies on cytoskeleton remodelling via activation of Rho kinase (ROCK). We propose that a TGF-b autocrine loop confers an amoeboid-like motility on Theileria-infected leukocytes, which combines with MMP-dependent motility to drive invasiveness and virulence

    PARP-1 dependent recruitment of the amyotrophic lateral sclerosis-associated protein FUS/TLS to sites of oxidative DNA damage

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is associated with progressive degeneration of motor neurons. Several of the genes associated with this disease encode proteins involved in RNA processing, including fused-in-sarcoma/translocated-in-sarcoma (FUS/TLS). FUS is a member of the heterogeneous nuclear ribonucleoprotein (hnRNP) family of proteins that bind thousands of pre-mRNAs and can regulate their splicing. Here, we have examined the possibility that FUS is also a component of the cellular response to DNA damage. We show that both GFP-tagged and endogenous FUS re-localize to sites of oxidative DNA damage induced by UVA laser, and that FUS recruitment is greatly reduced or ablated by an inhibitor of poly (ADP-ribose) polymerase activity. Consistent with this, we show that recombinant FUS binds directly to poly (ADP-ribose) in vitro, and that both GFP-tagged and endogenous FUS fail to accumulate at sites of UVA laser induced damage in cells lacking poly (ADP-ribose) polymerase-1. Finally, we show that GFP-FUS(R521G), harbouring a mutation that is associated with ALS, exhibits reduced ability to accumulate at sites of UVA laser-induced DNA damage. Together, these data suggest that FUS is a component of the cellular response to DNA damage, and that defects in this response may contribute to ALS

    High-Sensitivity Cardiac Troponin and the Universal Definition of Myocardial Infarction.

    Get PDF
    Background: The introduction of more sensitive cardiac troponin assays has led to increased recognition of myocardial injury in acute illnesses other than acute coronary syndrome. The Universal Definition of Myocardial Infarction recommends high-sensitivity cardiac troponin (hs-cTn) testing and classification of patients with myocardial injury based on aetiology, but the clinical implications of implementing this guideline are not well understood. Methods: In a stepped-wedge cluster randomized controlled trial, we implemented a hs-cTn assay and the recommendations of the Universal Definition in 48,282 consecutive patients with suspected acute coronary syndrome. In a pre-specified secondary analysis, we compared the primary outcome of myocardial infarction or cardiovascular death and secondary outcome of non-cardiovascular death at one year across diagnostic categories. Results: Implementation increased the diagnosis of type 1 myocardial infarction by 11% (510/4,471), type 2 myocardial infarction by 22% (205/916), and acute and chronic myocardial injury by 36% (443/1,233) and 43% (389/898), respectively. Compared to those without myocardial injury, the rate of the primary outcome was highest in those with type 1 myocardial infarction (cause-specific hazard ratio [csHR] 5.64, 95% confidence interval [CI] 5.12 to 6.22), but was similar across diagnostic categories, whereas non-cardiovascular deaths were highest in those with acute myocardial injury (csHR 2.65, 95%CI 2.33 to 3.01). Despite modest increases in anti-platelet therapy and coronary revascularization after implementation in patients with type 1 myocardial infarction, the primary outcome was unchanged (csHR 1.00, 95%CI 0.82 to 1.21). Increased recognition of type 2 myocardial infarction and myocardial injury did not lead to changes in investigation, treatment or outcomes. Conclusions: Implementation of high-sensitivity cardiac troponin and the recommendations of the Universal Definition of Myocardial Infarction identified patients at high-risk of cardiovascular and non-cardiovascular events, but was not associated with consistent increases in treatment or improved outcomes. Trials of secondary prevention are urgently required to determine whether this risk is modifiable in patients without type 1 myocardial infarction. Clinical Trial Registration: URL: https://clinicaltrials.gov Unique Identifier: NCT0185212

    Beyond the standard seesaw: neutrino masses from Kahler operators and broken supersymmetry

    Get PDF
    We investigate supersymmetric scenarios in which neutrino masses are generated by effective d=6 operators in the Kahler potential, rather than by the standard d=5 superpotential operator. First, we discuss some general features of such effective operators, also including SUSY-breaking insertions, and compute the relevant renormalization group equations. Contributions to neutrino masses arise at low energy both at the tree level and through finite threshold corrections. In the second part we present simple explicit realizations in which those Kahler operators arise by integrating out heavy SU(2)_W triplets, as in the type II seesaw. Distinct scenarios emerge, depending on the mechanism and the scale of SUSY-breaking mediation. In particular, we propose an appealing and economical picture in which the heavy seesaw mediators are also messengers of SUSY breaking. In this case, strong correlations exist among neutrino parameters, sparticle and Higgs masses, as well as lepton flavour violating processes. Hence, this scenario can be tested at high-energy colliders, such as the LHC, and at lower energy experiments that measure neutrino parameters or search for rare lepton decays.Comment: LaTeX, 34 pages; some corrections in Section
    corecore