130 research outputs found

    Bayesian test for colocalisation between pairs of genetic association studies using summary statistics.

    Get PDF
    Genetic association studies, in particular the genome-wide association study (GWAS) design, have provided a wealth of novel insights into the aetiology of a wide range of human diseases and traits, in particular cardiovascular diseases and lipid biomarkers. The next challenge consists of understanding the molecular basis of these associations. The integration of multiple association datasets, including gene expression datasets, can contribute to this goal. We have developed a novel statistical methodology to assess whether two association signals are consistent with a shared causal variant. An application is the integration of disease scans with expression quantitative trait locus (eQTL) studies, but any pair of GWAS datasets can be integrated in this framework. We demonstrate the value of the approach by re-analysing a gene expression dataset in 966 liver samples with a published meta-analysis of lipid traits including >100,000 individuals of European ancestry. Combining all lipid biomarkers, our re-analysis supported 26 out of 38 reported colocalisation results with eQTLs and identified 14 new colocalisation results, hence highlighting the value of a formal statistical test. In three cases of reported eQTL-lipid pairs (SYPL2, IFT172, TBKBP1) for which our analysis suggests that the eQTL pattern is not consistent with the lipid association, we identify alternative colocalisation results with SORT1, GCKR, and KPNB1, indicating that these genes are more likely to be causal in these genomic intervals. A key feature of the method is the ability to derive the output statistics from single SNP summary statistics, hence making it possible to perform systematic meta-analysis type comparisons across multiple GWAS datasets (implemented online at http://coloc.cs.ucl.ac.uk/coloc/). Our methodology provides information about candidate causal genes in associated intervals and has direct implications for the understanding of complex diseases as well as the design of drugs to target disease pathways

    Characterisation of surface oxygen groups on different carbon materials by the Boehm method and temperature-programmed desorption

    Get PDF
    The surface characteristics of different carbon materials: activated carbon, carbon felt, glassy carbon and a porous carbon monolith were investigated. The specific surface area was examined by the BET method with N(2) adsorption, the amount and the type of surface oxygen groups by Boehm titration as well as by temperature-programmed desorption (TPD). By comparing the results obtained using BET analysis with those of TPD and the Boehm method, it was found that the number of surface groups was not proportional to the specific surface area. The total amount of oxygen groups, obtained by TPD, is higher than the amount obtained by Boehms method for porous samples. The inconsistencies between these results originate from the fact that the Boehm method is limited to the determination of acidic and basic groups, whereas TPD provides information on the total number of all surface oxygen groups. In addition, the presence of porosity could reduce the solvent-accessible surface in the Boehm method. The TPD profiles of CO evolution showed the presence of a low temperature maximum, below 650 K, which originates from CO(2) reduction on the carbon material surface

    Quantitative Flow Ratio to Predict Nontarget Vessel-Related Events at 5 Years in Patients With ST-Segment-Elevation Myocardial Infarction Undergoing Angiography-Guided Revascularization.

    Get PDF
    Background In ST-segment-elevation myocardial infarction, angiography-based complete revascularization is superior to culprit-lesion-only percutaneous coronary intervention. Quantitative flow ratio (QFR) is a novel, noninvasive, vasodilator-free method used to assess the hemodynamic significance of coronary stenoses. We aimed to investigate the incremental value of QFR over angiography in nonculprit lesions in patients with ST-segment-elevation myocardial infarction undergoing angiography-guided complete revascularization. Methods and Results This was a retrospective post hoc QFR analysis of untreated nontarget vessels (any degree of diameter stenosis [DS]) from the randomized multicenter COMFORTABLE AMI (Comparison of Biolimus Eluted From an Erodible Stent Coating With Bare Metal Stents in Acute ST-Elevation Myocardial Infarction) trial by assessors blinded for clinical outcomes. The primary end point was cardiac death, spontaneous nontarget vessel myocardial infarction, and clinically indicated nontarget vessel revascularization (ie, ≥70% DS by 2-dimensional quantitative coronary angiography or ≥50% DS and ischemia) at 5 years. Of 1161 patients with ST-segment-elevation myocardial infarction, 946 vessels in 617 patients were analyzable by QFR. At 5 years, the rate of the primary end point was significantly higher in patients with QFR ≤0.80 (n=35 patients, n=36 vessels) versus QFR >0.80 (n=582 patients, n=910 vessels) (62.9% versus 12.5%, respectively; hazard ratio [HR], 7.33 [95% CI, 4.54-11.83], P30% DS by 3-dimensional quantitative coronary angiography. Conclusions Our study suggests incremental value of QFR over angiography-guided percutaneous coronary intervention for nonculprit lesions among patients with ST-segment-elevation myocardial infarction undergoing primary percutaneous coronary intervention

    Genome-wide association study of eosinophilic granulomatosis with polyangiitis reveals genomic loci stratified by ANCA status

    Get PDF
    Eosinophilic granulomatosis with polyangiitis (EGPA) is a rare inflammatory disease of unknown cause. 30% of patients have anti-neutrophil cytoplasmic antibodies (ANCA) specific for myeloperoxidase (MPO). Here, we describe a genome-wide association study in 676 EGPA cases and 6,809 controls, that identifies 4 EGPA-associated loci through conventional case-control analysis, and 4 additional associations through a conditional false discovery rate approach. Many variants are also associated with asthma and six are associated with eosinophil count in the general population. Through Mendelian randomisation, we show that a primary tendency to eosinophilia contributes to EGPA susceptibility. Stratification by ANCA reveals that EGPA comprises two genetically and clinically distinct syndromes. MPO+ ANCA EGPA is an eosinophilic autoimmune disease sharing certain clinical features and an HLA-DQ association with MPO+ ANCA-associated vasculitis, while ANCA-negative EGPA may instead have a mucosal/barrier dysfunction origin. Four candidate genes are targets of therapies in development, supporting their exploration in EGPA

    Polymorphism in a lincRNA Associates with a Doubled Risk of Pneumococcal Bacteremia in Kenyan Children.

    Get PDF
    Bacteremia (bacterial bloodstream infection) is a major cause of illness and death in sub-Saharan Africa but little is known about the role of human genetics in susceptibility. We conducted a genome-wide association study of bacteremia susceptibility in more than 5,000 Kenyan children as part of the Wellcome Trust Case Control Consortium 2 (WTCCC2). Both the blood-culture-proven bacteremia case subjects and healthy infants as controls were recruited from Kilifi, on the east coast of Kenya. Streptococcus pneumoniae is the most common cause of bacteremia in Kilifi and was thus the focus of this study. We identified an association between polymorphisms in a long intergenic non-coding RNA (lincRNA) gene (AC011288.2) and pneumococcal bacteremia and replicated the results in the same population (p combined = 1.69 × 10(-9); OR = 2.47, 95% CI = 1.84-3.31). The susceptibility allele is African specific, derived rather than ancestral, and occurs at low frequency (2.7% in control subjects and 6.4% in case subjects). Our further studies showed AC011288.2 expression only in neutrophils, a cell type that is known to play a major role in pneumococcal clearance. Identification of this novel association will further focus research on the role of lincRNAs in human infectious disease.Wellcome Trust (Grant ID: 084716/Z/08/Z)This is the final version of the article. It first appeared from Cell Press/Elsevier via http://dx.doi.org/10.1016/j.ajhg.2016.03.02

    The Val158Met COMT polymorphism is a modifier of the age at onset in Parkinson's disease with a sexual dimorphism

    Get PDF
    The catechol-O-methyltranferase (COMT) is one of the main enzymes that metabolise dopamine in the brain. The Val158Met polymorphism in the COMT gene (rs4680) causes a trimodal distribution of high (Val/Val), intermediate (Val/Met) and low (Met/Met) enzyme activity. We tested whether the Val158Met polymorphism is a modifier of the age at onset (AAO) in Parkinson's disease (PD). The rs4680 was genotyped in a total of 16 609 subjects from five independent cohorts of European and North American origin (5886 patients with PD and 10 723 healthy controls). The multivariate analysis for comparing PD and control groups was based on a stepwise logistic regression, with gender, age and cohort origin included in the initial model. The multivariate analysis of the AAO was a mixed linear model, with COMT genotype and gender considered as fixed effects and cohort and cohort-gender interaction as random effects. COMT genotype was coded as a quantitative variable, assuming a codominant genetic effect. The distribution of the COMT polymorphism was not significantly different in patients and controls (p=0.22). The Val allele had a significant effect on the AAO with a younger AAO in patients with the Val/Val (57.1±13.9, p=0.03) than the Val/Met (57.4±13.9) and the Met/Met genotypes (58.3±13.5). The difference was greater in men (1.9 years between Val/Val and Met/Met, p=0.007) than in women (0.2 years, p=0.81). Thus, the Val158Met COMT polymorphism is not associated with PD in the Caucasian population but acts as a modifier of the AAO in PD with a sexual dimorphism: the Val allele is associated with a younger AAO in men with idiopathic PD

    A Two-Stage Meta-Analysis Identifies Several New Loci for Parkinson's Disease

    Get PDF
    A previous genome-wide association (GWA) meta-analysis of 12,386 PD cases and 21,026 controls conducted by the International Parkinson's Disease Genomics Consortium (IPDGC) discovered or confirmed 11 Parkinson's disease (PD) loci. This first analysis of the two-stage IPDGC study focused on the set of loci that passed genome-wide significance in the first stage GWA scan. However, the second stage genotyping array, the ImmunoChip, included a larger set of 1,920 SNPs selected on the basis of the GWA analysis. Here, we analyzed this set of 1,920 SNPs, and we identified five additional PD risk loci (combined p<5x10(-10), PARK16/1q32, STX1B/16p11, FGF20/8p22, STBD1/4q21, and GPNMB/7p15). Two of these five loci have been suggested by previous association studies (PARK16/1q32, FGF20/8p22), and this study provides further support for these findings. Using a dataset of post-mortem brain samples assayed for gene expression (n = 399) and methylation (n = 292), we identified methylation and expression changes associated with PD risk variants in PARK16/1q32, GPNMB/7p15, and STX1B/16p11 loci, hence suggesting potential molecular mechanisms and candidate genes at these risk loci
    corecore