161 research outputs found

    Consensus Formation in Multi-state Majority and Plurality Models

    Full text link
    We study consensus formation in interacting systems that evolve by multi-state majority rule and by plurality rule. In an update event, a group of G agents (with G odd), each endowed with an s-state spin variable, is specified. For majority rule, all group members adopt the local majority state; for plurality rule the group adopts the local plurality state. This update is repeated until a final consensus state is generally reached. In the mean field limit, the consensus time for an N-spin system increases as ln N for both majority and plurality rule, with an amplitude that depends on s and G. For finite spatial dimensions, domains undergo diffusive coarsening in majority rule when s or G is small. For larger s and G, opinions spread ballistically from the few groups with an initial local majority. For plurality rule, there is always diffusive domain coarsening toward consensus.Comment: 8 pages, 11 figures, 2-column revtex4 format. Updated version: small changes in response to referee comments. For publication in J Phys

    Viscoelastic properties of suspended cells measured with shear flow deformation cytometry

    Get PDF
    Numerous cell functions are accompanied by phenotypic changes in viscoelastic properties, and measuring them can help elucidate higher level cellular functions in health and disease. We present a high-throughput, simple and low-cost microfluidic method for quantitatively measuring the elastic (storage) and viscous (loss) modulus of individual cells. Cells are suspended in a high-viscosity fluid and are pumped with high pressure through a 5.8 cm long and 200 µm wide microfluidic channel. The fluid shear stress induces large, ear ellipsoidal cell deformations. In addition, the flow profile in the channel causes the cells to rotate in a tank-treading manner. From the cell deformation and tank treading frequency, we extract the frequency-dependent viscoelastic cell properties based on a theoretical framework developed by R. Roscoe [1] that describes the deformation of a viscoelastic sphere in a viscous fluid under steady laminar flow. We confirm the accuracy of the method using atomic force microscopy-calibrated polyacrylamide beads and cells. Our measurements demonstrate that suspended cells exhibit power-law, soft glassy rheological behavior that is cell-cycle-dependent and mediated by the physical interplay between the actin filament and intermediate filament networks

    Chitosan encapsulation modulates the effect of capsaicin on the tight junctions of MDCK cells

    Get PDF
    Capsaicin has known pharmacological effects including the ability to reversibly open cellular tight junctions, among others. The aim of this study was to develop a strategy to enhance the paracellular transport of a substance with low permeability (FITC-dextran) across an epithelial cell monolayer via reversible opening of cellular tight junctions using a nanosystem comprised by capsaicin and of chitosan. We compared the biophysical properties of free capsaicin and capsaicin-loaded chitosan nanocapsules, including their cytotoxicity towards epithelial MDCK-C7 cells and their effect on the integrity of tight junctions, membrane permeability and cellular uptake. The cytotoxic response of MDCK-C7 cells to capsaicin at a concentration of 500 μM, which was evident for the free compound, is not observable following its encapsulation. The interaction between nanocapsules and the tight junctions of MDCK-C7 cells was investigated by impedance spectroscopy, digital holographic microscopy and structured illumination fluorescence microscopy. The nanocapsules modulated the interaction between capsaicin and tight junctions as shown by the different time profile of trans-epithelial electrical resistance and the enhanced permeability of monolayers incubated with FITC-dextran. Structured illumination fluorescence microscopy showed that the nanocapsules were internalized by MDCK-C7 cells. The capsaicin-loaded nanocapsules could be further developed as drug nanocarriers with enhanced epithelial permeability

    Modelling opinion formation by means of kinetic equations

    Get PDF
    In this chapter, we review some mechanisms of opinion dynamics that can be modelled by kinetic equations. Beside the sociological phenomenon of compromise, naturally linked to collisional operators of Boltzmann kind, many other aspects, already mentioned in the sociophysical literature or no, can enter in this framework. While describing some contributions appeared in the literature, we enlighten some mathematical tools of kinetic theory that can be useful in the context of sociophysics

    Putovanje kroz interakcije proteinskih kinaza aktiviranih mitogenima i okratoksina A

    Get PDF
    Ochratoxin A (OTA) is a ubiquitous mycotoxin with potential nephrotoxic, carcinogenic, and cytotoxic action. It has been proposed that OTA might be involved in the development of Balkan endemic nephropathy, which is associated with an increased risk of urinary tract tumours, and of other forms of interstitial nephritis. Cell susceptibility to OTA mainly depends on mycotoxin concentrations, duration of exposure, and intracellular molecular and genetic context. OTA can affect a cell by stimulating or inhibiting certain signalling pathways such as mitogen-activated protein kinase (MAPK). Three major mammalian MAPKs have been described: extracellular signal-regulated protein kinase (ERK), c-Jun N-terminal kinase (JNK), and p38 MAPK. All MAPKs regulate diverse cellular programmes, but in most cases ERKs have been linked to cell survival, while JNKs, and p38 MAPKs have been implicated in cell death by apoptosis. This review looks into OTA-mediated MAPK activation and its effects.Okratoksin A (OTA) posvuda je prisutan mikotoksin za koji se smatra da je potencijalno nefrotoksičan i karcinogen, a može uzrokovati i smrt stanice. OTA se smatra mogućim uzročnikom balkanske endemske nefropatije koju karakterizira povećani rizik od razvoja tumora mokraćnog sustava te različitih drugih vrsta intersticijskog nefritisa. Osjetljivost stanice naspram OTA ovisi ponajprije o koncentraciji mikotoksina, vremenu izloženosti i o unutarstaničnome molekularnom i genskom sklopu. OTA može djelovati na stanicu tako što potiče ili inhibira određene signalne putove u stanici poput puta proteinskih kinaza aktiviranih mitogenima (MAPK). Tri glavne MAPK u sisavaca su proteinska kinaza regulirana izvanstaničnim signalima (ERK), kinaza koja fosforilira N-kraj transkripcijskog faktora c-Jun (JNK) i p38 MAPK. Svi članovi porodice MAPK reguliraju različite stanične programe, s time da ERK najčešće stimuliraju preživljavanje stanica, dok JNK i p38 MAPK najčešće uzrokuju umiranje stanica apoptozom. U ovome smo preglednom članku prikazali na koji način stanice odgovaraju na aktivaciju MAPK koju potiče OTA

    Inhibition of Na+−H+ exchange impairs receptor-mediated albumin endocytosis in renal proximal tubule-derived epithelial cells from opossum

    No full text
    Receptor-mediated endocytosis is an important mechanism for transport of macromolecules and regulation of cell-surface receptor expression. In renal proximal tubules, receptor-mediated endocytosis mediates the reabsorption of filtered albumin. Acidification of the endocytic compartments is essential because it interferes with ligand-receptor dissociation, vesicle trafficking, fusion events and coat formation.Here we show that the activity of Na+−H+ exchanger isoform 3 (NHE3) is important for proper receptor-mediated endocytosis of albumin and endosomal pH homeostasis in a renal proximal tubular cell line (opossum kidney cells) which expresses NHE3 only.Depending on their inhibitory potency with respect to NHE3 and their lipophilicity, the NHE inhibitors EIPA, amiloride and HOE694 differentially reduced albumin endocytosis. The hydrophilic inhibitor HOE642 had no effect.Inhibition of NHE3 led to an alkalinization of early endosomes and to an acidification of the cytoplasm, indicating that Na+−H+ exchange contributes to the acidification of the early endosomal compartment due to the existence of a sufficient Na+ gradient across the endosomal membrane.Exclusive acidification of the cytoplasm with propionic acid or by removal of Na+ induced a significantly smaller reduction in endocytosis than that induced by inhibition of Na+−H+ exchange.Analysis of the inhibitory profiles indicates that in early endosomes and endocytic vesicles NHE3 is of major importance, whereas plasma membrane NHE3 plays a minor role.Thus, NHE3-mediated acidification along the first part of the endocytic pathway plays an important role in receptor-mediated endocytosis. Furthermore, the involvement of NHE3 offers new ways to explain the regulation of receptor-mediated endocytosis
    corecore