940 research outputs found

    An investigation of the relationship between vision development observations and reading performance

    Get PDF
    An investigation of the relationship between vision development observations and reading performanc

    Corporate Hierarchies and the Size of Nations: Theory and Evidence

    Get PDF
    Corporate organization varies within a country and across countries with country size. The paper starts by establishing some facts about corporate organization based on unique data of 660 Austrian and German corporations. The larger country (Germany) has larger firms with flatter more decentral corporate hierarchies compared to the smaller country (Austria). Firms in the larger country change their organization less fast than firms in the smaller country. Over time firms have been introducing less hierarchical organizations by delegating power to lower levels of the corporation. We develop a theory which explains these facts and which links these features to the trade environment that countries and firms face. We introduce firms with internal hierarchies in a Krugman (1980) model of trade. We show that international trade and the toughness of competition in international markets induce a power struggle in firms which eventually leads to decentralized corporate hierarchies. We offer econometric evidence which is consistent with the models predictions

    A method for colocating satellite X_(CO₂) data to ground-based data and its application to ACOS-GOSAT and TCCON

    Get PDF
    Satellite measurements are often compared with higher-precision ground-based measurements as part of validation efforts. The satellite soundings are rarely perfectly coincident in space and time with the ground-based measurements, so a colocation methodology is needed to aggregate "nearby" soundings into what the instrument would have seen at the location and time of interest. We are particularly interested in validation efforts for satellite-retrieved total column carbon dioxide (X_(CO₂)), where X_(CO₂) data from Greenhouse Gas Observing Satellite (GOSAT) retrievals (ACOS, NIES, RemoteC, PPDF, etc.) or SCanning Imaging Absorption SpectroMeter for Atmospheric CHartographY (SCIAMACHY) are often colocated and compared to ground-based column X_(CO₂) measurement from Total Carbon Column Observing Network (TCCON). Current colocation methodologies for comparing satellite measurements of total column dry-air mole fractions of CO₂ (X_(CO₂)) with ground-based measurements typically involve locating and averaging the satellite measurements within a latitudinal, longitudinal, and temporal window. We examine a geostatistical colocation methodology that takes a weighted average of satellite observations depending on the "distance" of each observation from a ground-based location of interest. The "distance" function that we use is a modified Euclidian distance with respect to latitude, longitude, time, and midtropospheric temperature at 700 hPa. We apply this methodology to X_(CO₂) retrieved from GOSAT spectra by the ACOS team, cross-validate the results to TCCON X_(CO₂) ground-based data, and present some comparisons between our methodology and standard existing colocation methods showing that, in general, geostatistical colocation produces smaller mean-squared error

    Validation of northern latitude Tropospheric Emission Spectrometer stare ozone profiles with ARC-IONS sondes during ARCTAS: sensitivity, bias and error analysis

    Get PDF
    We compare Tropospheric Emission Spectrometer (TES) versions 3 and 4, V003 and V004, respectively, nadir-stare ozone profiles with ozonesonde profiles from the Arctic Intensive Ozonesonde Network Study (ARCIONS, http://croc.gsfc.nasa.gov/arcions/ during the Arctic Research on the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) field mission. The ozonesonde data are from launches timed to match Aura's overpass, where 11 coincidences spanned 44° N to 71° N from April to July 2008. Using the TES "stare" observation mode, 32 observations are taken over each coincidental ozonesonde launch. By effectively sampling the same air mass 32 times, comparisons are made between the empirically-calculated random errors to the expected random errors from measurement noise, temperature and interfering species, such as water. This study represents the first validation of high latitude (>70°) TES ozone. We find that the calculated errors are consistent with the actual errors with a similar vertical distribution that varies between 5% and 20% for V003 and V004 TES data. In general, TES ozone profiles are positively biased (by less than 15%) from the surface to the upper-troposphere (~1000 to 100 hPa) and negatively biased (by less than 20%) from the upper-troposphere to the lower-stratosphere (100 to 30 hPa) when compared to the ozonesonde data. Lastly, for V003 and V004 TES data between 44° N and 71° N there is variability in the mean biases (from −14 to +15%), mean theoretical errors (from 6 to 13%), and mean random errors (from 9 to 19%)

    Mass and Angular Momentum Transfer in the Massive Algol Binary RY Persei

    Full text link
    We present an investigation of H-alpha emission line variations observed in the massive Algol binary, RY Per. We give new radial velocity data for the secondary based upon our optical spectra and for the primary based upon high dispersion UV spectra. We present revised orbital elements and an estimate of the primary's projected rotational velocity (which indicates that the primary is rotating 7 times faster than synchronous). We use a Doppler tomography algorithm to reconstruct the individual primary and secondary spectra in the region of H-alpha, and we subtract the latter from each of our observations to obtain profiles of the primary and its disk alone. Our H-alpha observations of RY Per show that the mass gaining primary is surrounded by a persistent but time variable accretion disk. The profile that is observed outside-of-eclipse has weak, double-peaked emission flanking a deep central absorption, and we find that these properties can be reproduced by a disk model that includes the absorption of photospheric light by the band of the disk seen in projection against the face of the star. We developed a new method to reconstruct the disk surface density distribution from the ensemble of H-alpha profiles observed around the orbit, and this method accounts for the effects of disk occultation by the stellar components, the obscuration of the primary by the disk, and flux contributions from optically thick disk elements. The resulting surface density distribution is elongated along the axis joining the stars, in the same way as seen in hydrodynamical simulations of gas flows that strike the mass gainer near trailing edge of the star. This type of gas stream configuration is optimal for the transfer of angular momentum, and we show that rapid rotation is found in other Algols that have passed through a similar stage.Comment: 39 pages, 12 figures, ApJ in press, 2004 June 20 issu

    Highly Ionized Collimated Outflow from HE 0238 - 1904

    Full text link
    We present a detailed analysis of a highly ionized, multiphased and collimated outflowing gas detected through O V, O VI, Ne VIII and Mg X absorption associated with the QSO HE 0238 - 1904 (z_em ~ 0.629). Based on the similarities in the absorption line profiles and estimated covering fractions, we find that the O VI and Ne VIII absorption trace the same phase of the absorbing gas. Simple photoionization models can reproduce the observed N(Ne VIII), N(O VI) and N(Mg X) from a single phase whereas the low ionization species (e.g. N III, N IV, O IV) originate from a different phase. The measured N(Ne VIII)/N(O VI) ratio is found to be remarkably similar (within a factor of ~ 2) in several individual absorption components kinematically spread over ~ 1800 km/s. Under photoionization this requires a fine tuning between hydrogen density (nH) and the distance of the absorbing gas from the QSO. Alternatively this can also be explained by collisional ionization in hot gas with T > 10^{5.7} K. Long-term stability favors the absorbing gas being located outside the broad line region (BLR). We speculate that the collimated flow of such a hot gas could possibly be triggered by the radio jet interaction.Comment: Minor revision (accepted for publication in MNRAS letter

    Overview of the Far Ultraviolet Spectroscopic Explorer Mission

    Get PDF
    The Far Ultraviolet Spectroscopic Explorer satellite observes light in the far-ultraviolet spectral region, 905 - 1187 A with high spectral resolution. The instrument consists of four coaligned prime-focus telescopes and Rowland spectrographs with microchannel plate detectors. Two of the telescope channels use Al:LiF coatings for optimum reflectivity from approximately 1000 to 1187 A and the other two use SiC coatings for optimized throughput between 905 and 1105 A. The gratings are holographically ruled to largely correct for astigmatism and to minimize scattered light. The microchannel plate detectors have KBr photocathodes and use photon counting to achieve good quantum efficiency with low background signal. The sensitivity is sufficient to examine reddened lines of sight within the Milky Way as well as active galactic nuclei and QSOs for absorption line studies of both Milky Way and extra-galactic gas clouds. This spectral region contains a number of key scientific diagnostics, including O VI, H I, D I and the strong electronic transitions of H2 and HD.Comment: To appear in FUSE special issue of the Astrophysical Journal Letters. 6 pages + 4 figure

    The vertical distribution of ozone instantaneous radiative forcing from satellite and chemistry climate models

    Get PDF
    We evaluate the instantaneous radiative forcing (IRF) of tropospheric ozone predicted by four state-of-the-art global chemistry climate models (AM2-Chem, CAM-Chem, ECHAM5-MOZ, and GISS-PUCCINI) against ozone distribution observed from the NASA Tropospheric Emission Spectrometer (TES) during August 2006. The IRF is computed through the application of an observationally constrained instantaneous radiative forcing kernels (IRFK) to the difference between TES and model-predicted ozone. The IRFK represent the sensitivity of outgoing longwave radiation to the vertical and spatial distribution of ozone under all-sky condition. Through this technique, we find total tropospheric IRF biases from -0.4 to + 0.7 W/m(2) over large regions within the tropics and midlatitudes, due to ozone differences over the region in the lower and middle troposphere, enhanced by persistent bias in the upper troposphere-lower stratospheric region. The zonal mean biases also range from -30 to + 50 mW/m(2) for the models. However, the ensemble mean total tropospheric IRF bias is less than 0.2 W/m(2) within the entire troposphere
    • 

    corecore