123 research outputs found

    Pion Interferometry for a Granular Source of Quark-Gluon Plasma Droplets

    Full text link
    We examine the two-pion interferometry for a granular source of quark-gluon plasma droplets. The evolution of the droplets is described by relativistic hydrodynamics with an equation of state suggested by lattice gauge results. Pions are assumed to be emitted thermally from the droplets at the freeze-out configuration characterized by a freeze-out temperature TfT_f. We find that the HBT radius RoutR_{out} decreases if the initial size of the droplets decreases. On the other hand, RsideR_{side} depends on the droplet spatial distribution and is relatively independent of the droplet size. It increases with an increase in the width of the spatial distribution and the collective-expansion velocity of the droplets. As a result, the value of RoutR_{out} can lie close to RsideR_{side} for a granular quark-gluon plasma source. The granular model of the emitting source may provide an explanation to the RHIC HBT puzzle and may lead to a new insight into the dynamics of the quark-gluon plasma phase transition.Comment: 5 pages, 4 figure

    Phase appearance or disappearance in two-phase flows

    Get PDF
    This paper is devoted to the treatment of specific numerical problems which appear when phase appearance or disappearance occurs in models of two-phase flows. Such models have crucial importance in many industrial areas such as nuclear power plant safety studies. In this paper, two outstanding problems are identified: first, the loss of hyperbolicity of the system when a phase appears or disappears and second, the lack of positivity of standard shock capturing schemes such as the Roe scheme. After an asymptotic study of the model, this paper proposes accurate and robust numerical methods adapted to the simulation of phase appearance or disappearance. Polynomial solvers are developed to avoid the use of eigenvectors which are needed in usual shock capturing schemes, and a method based on an adaptive numerical diffusion is designed to treat the positivity problems. An alternate method, based on the use of the hyperbolic tangent function instead of a polynomial, is also considered. Numerical results are presented which demonstrate the efficiency of the proposed solutions

    The impact of viscosity on the morphology of gaseous flows in semidetached binary systems

    Get PDF
    Results of 3D gas dynamical simulation of mass transfer in binaries are presented for systems with various values of viscosity. Analysis of obtained solutions shows that in the systems with low value of viscosity the flow structure is qualitatively similar to one for systems with high viscosity. Presented calculations confirm that there is no shock interaction between the stream from L1 and the forming accretion disk (`hot spot') at any value of viscosity.Comment: LaTeX, 18 pages, 15 eps-figures, Astron. Reports, in pres

    Correlated Gravitational Wave and Neutrino Signals from General-Relativistic Rapidly Rotating Iron Core Collapse

    Get PDF
    We present results from a new set of 3D general-relativistic hydrodynamic simulations of rotating iron core collapse. We assume octant symmetry and focus on axisymmetric collapse, bounce, the early postbounce evolution, and the associated gravitational wave (GW) and neutrino signals. We employ a finite-temperature nuclear equation of state, parameterized electron capture in the collapse phase, and a multi-species neutrino leakage scheme after bounce. The latter captures the important effects of deleptonization, neutrino cooling and heating and enables approximate predictions for the neutrino luminosities in the early evolution after core bounce. We consider 12-solar-mass and 40-solar-mass presupernova models and systematically study the effects of (i) rotation, (ii) progenitor structure, and (iii) postbounce neutrino leakage on dynamics, GW, and, neutrino signals. We demonstrate, that the GW signal of rapidly rotating core collapse is practically independent of progenitor mass and precollapse structure. Moreover, we show that the effects of neutrino leakage on the GW signal are strong only in nonrotating or slowly rotating models in which GW emission is not dominated by inner core dynamics. In rapidly rotating cores, core bounce of the centrifugally-deformed inner core excites the fundamental quadrupole pulsation mode of the nascent protoneutron star. The ensuing global oscillations (f~700-800 Hz) lead to pronounced oscillations in the GW signal and correlated strong variations in the rising luminosities of antineutrino and heavy-lepton neutrinos. We find these features in cores that collapse to protoneutron stars with spin periods <~ 2.5 ms and rotational energies sufficient to drive hyper-energetic core-collapse supernova explosions. Hence, joint GW + neutrino observations of a core collapse event could deliver strong evidence for or against rapid core rotation. [abridged]Comment: 29 pages, 14 figures. Replaced with version matching published versio

    Nonlinear hydrodynamical evolution of rotating relativistic stars: Numerical methods and code tests

    Get PDF
    We present numerical hydrodynamical evolutions of rapidly rotating relativistic stars, using an axisymmetric, nonlinear relativistic hydrodynamics code. We use four different high-resolution shock-capturing (HRSC) finite-difference schemes (based on approximate Riemann solvers) and compare their accuracy in preserving uniformly rotating stationary initial configurations in long-term evolutions. Among these four schemes, we find that the third-order PPM scheme is superior in maintaining the initial rotation law in long-term evolutions, especially near the surface of the star. It is further shown that HRSC schemes are suitable for the evolution of perturbed neutron stars and for the accurate identification (via Fourier transforms) of normal modes of oscillation. This is demonstrated for radial and quadrupolar pulsations in the nonrotating limit, where we find good agreement with frequencies obtained with a linear perturbation code. The code can be used for studying small-amplitude or nonlinear pulsations of differentially rotating neutron stars, while our present results serve as testbed computations for three-dimensional general-relativistic evolution codes.Comment: 13 pages, 10 figures, submitted to MNRA

    Black Hole Formation in Failing Core-Collapse Supernovae

    Get PDF
    We present results of a systematic study of failing core-collapse supernovae and the formation of stellar-mass black holes (BHs). Using our open-source general-relativistic 1.5D code GR1D equipped with a three-species neutrino leakage/heating scheme and over 100 presupernova models, we study the effects of the choice of nuclear equation of state (EOS), zero-age main sequence (ZAMS) mass and metallicity, rotation, and mass-loss prescription on BH formation. We find that the outcome, for a given EOS, can be estimated, to first order, by a single parameter, the compactness of the stellar core at bounce. By comparing protoneutron star (PNS) structure at the onset of gravitational instability with solutions of the Tolman-Oppenheimer-Volkof equations, we find that thermal pressure support in the outer PNS core is responsible for raising the maximum PNS mass by up to 25% above the cold NS value. By artificially increasing neutrino heating, we find the critical neutrino heating efficiency required for exploding a given progenitor structure and connect these findings with ZAMS conditions, establishing, albeit approximately, for the first time based on actual collapse simulations, the mapping between ZAMS parameters and the outcome of core collapse. We also study the effect of progenitor rotation and find that the dimensionless spin of nascent BHs may be robustly limited below a^* = Jc/GM^2 = 1 by the appearance of nonaxisymmetric rotational instabilities.Comment: 20 emulateapj pages, 13 figures, published in the Astrophysical Journal, minor revision

    A New Open-Source Code for Spherically-Symmetric Stellar Collapse to Neutron Stars and Black Holes

    Get PDF
    We present the new open-source spherically-symmetric general-relativistic (GR) hydrodynamics code GR1D. It is based on the Eulerian formulation of GR hydrodynamics (GRHD) put forth by Romero-Ibanez-Gourgoulhon and employs radial-gauge, polar-slicing coordinates in which the 3+1 equations simplify substantially. We discretize the GRHD equations with a finite-volume scheme, employing piecewise-parabolic reconstruction and an approximate Riemann solver. GR1D is intended for the simulation of stellar collapse to neutron stars and black holes and will also serve as a testbed for modeling technology to be incorporated in multi-D GR codes. Its GRHD part is coupled to various finite-temperature microphysical equations of state in tabulated form that we make available with GR1D. An approximate deleptonization scheme for the collapse phase and a neutrino-leakage/heating scheme for the postbounce epoch are included and described. We also derive the equations for effective rotation in 1D and implement them in GR1D. We present an array of standard test calculations and also show how simple analytic equations of state in combination with presupernova models from stellar evolutionary calculations can be used to study qualitative aspects of black hole formation in failing rotating core-collapse supernovae. In addition, we present a simulation with microphysical EOS and neutrino leakage/heating of a failing core-collapse supernova and black hole formation in a presupernova model of a 40 solar mass zero-age main-sequence star. We find good agreement on the time of black hole formation (within 20%) and last stable protoneutron star mass (within 10%) with predictions from simulations with full Boltzmann neutrino radiation hydrodynamics.Comment: 25 pages, 6 figures, 2 appendices. Accepted for publication to the Classical and Quantum Gravity special issue for MICRA2009. Code may be downloaded from http://www.stellarcollapse.org Update: corrected title, small modifications suggested by the referees, added source term derivation in appendix

    Scalar field induced oscillations of neutron stars and gravitational collapse

    Full text link
    We study the interaction of massless scalar fields with self-gravitating neutron stars by means of fully dynamic numerical simulations of the Einstein-Klein-Gordon perfect fluid system. Our investigation is restricted to spherical symmetry and the neutron stars are approximated by relativistic polytropes. Studying the nonlinear dynamics of isolated neutron stars is very effectively performed within the characteristic formulation of general relativity, in which the spacetime is foliated by a family of outgoing light cones. We are able to compactify the entire spacetime on a computational grid and simultaneously impose natural radiative boundary conditions and extract accurate radiative signals. We study the transfer of energy from the scalar field to the fluid star. We find, in particular, that depending on the compactness of the neutron star model, the scalar wave forces the neutron star either to oscillate in its radial modes of pulsation or to undergo gravitational collapse to a black hole on a dynamical timescale. The radiative signal, read off at future null infinity, shows quasi-normal oscillations before the setting of a late time power-law tail.Comment: 12 pages, 13 figures, submitted to Phys. Rev.

    Simulation techniques for cosmological simulations

    Get PDF
    Modern cosmological observations allow us to study in great detail the evolution and history of the large scale structure hierarchy. The fundamental problem of accurate constraints on the cosmological parameters, within a given cosmological model, requires precise modelling of the observed structure. In this paper we briefly review the current most effective techniques of large scale structure simulations, emphasising both their advantages and shortcomings. Starting with basics of the direct N-body simulations appropriate to modelling cold dark matter evolution, we then discuss the direct-sum technique GRAPE, particle-mesh (PM) and hybrid methods, combining the PM and the tree algorithms. Simulations of baryonic matter in the Universe often use hydrodynamic codes based on both particle methods that discretise mass, and grid-based methods. We briefly describe Eulerian grid methods, and also some variants of Lagrangian smoothed particle hydrodynamics (SPH) methods.Comment: 42 pages, 16 figures, accepted for publication in Space Science Reviews, special issue "Clusters of galaxies: beyond the thermal view", Editor J.S. Kaastra, Chapter 12; work done by an international team at the International Space Science Institute (ISSI), Bern, organised by J.S. Kaastra, A.M. Bykov, S. Schindler & J.A.M. Bleeke

    GenASiS: General Astrophysical Simulation System. I. Refinable Mesh and Nonrelativistic Hydrodynamics

    Full text link
    GenASiS (General Astrophysical Simulation System) is a new code being developed initially and primarily, though by no means exclusively, for the simulation of core-collapse supernovae on the world's leading capability supercomputers. This paper---the first in a series---demonstrates a centrally refined coordinate patch suitable for gravitational collapse and documents methods for compressible nonrelativistic hydrodynamics. We benchmark the hydrodynamics capabilities of GenASiS against many standard test problems; the results illustrate the basic competence of our implementation, demonstrate the strengths and limitations of the HLLC relative to the HLL Riemann solver in a number of interesting cases, and provide preliminary indications of the code's ability to scale and to function with cell-by-cell fixed-mesh refinement.Comment: Belated update to version accepted ApJ
    • …
    corecore