781 research outputs found
Millimeter imaging of HD 163296: probing the disk structure and kinematics
We present new multi-wavelength millimeter interferometric observations of
the Herbig Ae star HD 163296 obtained with the IRAM/PBI, SMA and VLA arrays
both in continuum and in the 12CO, 13CO and C18O emission lines. Gas and dust
properties have been obtained comparing the observations with self-consistent
disk models for the dust and CO emission. The circumstellar disk is resolved
both in the continuum and in CO. We find strong evidence that the circumstellar
material is in Keplerian rotation around a central star of 2.6 Msun. The disk
inclination with respect to the line of sight is 46+-4 deg with a position
angle of 128+-4 deg. The slope of the dust opacity measured between 0.87 and 7
mm (beta=1) confirms the presence of mm/cm-size grains in the disk midplane.
The dust continuum emission is asymmetric and confined inside a radius of 200
AU while the CO emission extends up to 540 AU. The comparison between dust and
CO temperature indicates that CO is present only in the disk interior. Finally,
we obtain an increasing depletion of CO isotopomers from 12CO to 13CO and C18O.
We argue that these results support the idea that the disk of HD 163296 is
strongly evolved. In particular, we suggest that there is a strong depletion of
dust relative to gas outside 200 AU; this may be due to the inward migration of
large bodies that form in the outer disk or to clearing of a large gap in the
dust distribution by a low mass companion.Comment: Accepted for publication on A&A, 16 page
Impact of grain evolution on the chemical structure of protoplanetary disks
We study the impact of dust evolution in a protoplanetary disk around a T
Tauri star on the disk chemical composition. For the first time we utilize a
comprehensive model of dust evolution which includes growth, fragmentation and
sedimentation. Specific attention is paid to the influence of grain evolution
on the penetration of the UV field in the disk. A chemical model that includes
a comprehensive set of gas phase and grain surface chemical reactions is used
to simulate the chemical structure of the disk. The main effect of the grain
evolution on the disk chemical composition comes from sedimentation, and, to a
lesser degree, from the reduction of the total grain surface area. The net
effect of grain growth is suppressed by the fragmentation process which
maintains a population of small grains, dominating the total grain surface
area. We consider three models of dust properties. In model GS both growth and
sedimentation are taken into account. In models A5 and A4 all grains are
assumed to have the same size (10(-5) cm and 10(-4) cm, respectively) with
constant gas-to-dust mass ratio of 100. Like in previous studies, the
"three-layer" pattern (midplane, molecular layer, hot atmosphere) in the disk
chemical structure is preserved in all models, but shifted closer to the
midplane in models with increased grain size (GS and A4). Unlike other similar
studies, we find that in models GS and A4 column densities of most gas-phase
species are enhanced by 1-3 orders of magnitude relative to those in a model
with pristine dust (A5), while column densities of their surface counterparts
are decreased. We show that column densities of certain species, like C2H,
HC(2n+1)N (n=0-3), H2O and some other molecules, as well as the C2H2/HCN
abundance ratio which are accessible with Herschel and ALMA can be used as
observational tracers of early stages of the grain evolution process in
protoplanetary disks.Comment: 50 pages, 4 tables, 11 figures, accepted to the Ap
Emission from Water Vapor and Absorption from Other Gases at 5-7.5 Microns in Spitzer-IRS Spectra of Protoplanetary Disks
We present spectra of 13 T Tauri stars in the Taurus-Auriga star-forming
region showing emission in Spitzer Space Telescope Infrared Spectrograph (IRS)
5-7.5 micron spectra from water vapor and absorption from other gases in these
stars' protoplanetary disks. Seven stars' spectra show an emission feature at
6.6 microns due to the nu_2 = 1-0 bending mode of water vapor, with the shape
of the spectrum suggesting water vapor temperatures > 500 K, though some of
these spectra also show indications of an absorption band, likely from another
molecule. This water vapor emission contrasts with the absorption from warm
water vapor seen in the spectrum of the FU Orionis star V1057 Cyg. The other
six of the thirteen stars have spectra showing a strong absorption band,
peaking in strength at 5.6-5.7 microns, which for some is consistent with
gaseous formaldehyde (H2CO) and for others is consistent with gaseous formic
acid (HCOOH). There are indications that some of these six stars may also have
weak water vapor emission. Modeling of these stars' spectra suggests these
gases are present in the inner few AU of their host disks, consistent with
recent studies of infrared spectra showing gas in protoplanetary disks.Comment: 33 pages, 9 figures, to appear in the 20 August, 2014, V791 - 2 issue
of the Astrophysical Journa
Recommended from our members
The Spitzer Infrared Spectrograph Survey of T Tauri Stars in Taurus
We present 161 Spitzer Infrared Spectrograph (IRS) spectra of T Tauri stars and young brown dwarfs in the Taurus star-forming region. All of the targets were selected based on their infrared excess and are therefore surrounded by protoplanetary disks; they form the complete sample of all available IRS spectra of T Tauri stars with infrared excesses in Taurus. We also present the IRS spectra of seven Class 0/I objects in Taurus to complete the sample of available IRS spectra of protostars in Taurus. We use spectral indices that are not significantly affected by extinction to distinguish between envelope-and disk-dominated objects. Together with data from the literature, we construct spectral energy distributions for all objects in our sample. With spectral indices derived from the IRS spectra we infer disk properties such as dust settling and the presence of inner disk holes and gaps. We find a transitional disk frequency, which is based on objects with unusually large 13-31 mu m spectral indices indicative of a wall surrounding an inner disk hole, of about 3%, and a frequency of about 20% for objects with unusually large 10 mu m features, which could indicate disk gaps. The shape and strength of the 10 mu m silicate emission feature suggests weaker 10 mu m emission and more processed dust for very low mass objects and brown dwarfs (spectral types M6-M9). These objects also display weaker infrared excess emission from their disks, but do not appear to have more settled disks than their higher-mass counterparts. We find no difference for the spectral indices and properties of the dust between single and multiple systems.NASANASA through JPL/CaltechNASA through the Spitzer Space TelescopeNational Science Foundation AST-0544588, 0901947Pennsylvania State UniversityEberly College of SciencePennsylvania Space Grant ConsortiumNSFAstronom
Mid-Infrared Variability of protostars in IC 1396A
We have used Spitzer/IRAC to conduct a photometric monitoring program of the
IC1396A dark globule in order to study the mid-IR (3.6 - 8 micron) variability
of the heavily embedded Young Stellar Objects (YSOs) present in that area. We
obtained light curves covering a 14 day timespan with a twice daily cadence for
69 YSOs, and continuous light curves with approximately 12 second cadence over
7 hours for 38 YSOs. Typical accuracies for our relative photometry were 1-2%
for the long timespan data and a few mmag, corresponding to less than 0.5%, for
the 7 hour continuous "staring-mode" data. More than half of the YSOs showed
detectable variability, with amplitudes from ~0.05 mag to ~0.2 mag. About
thirty percent of the YSOs showed quasi-sinusoidal light curve shapes with
apparent periods from 5-12 days and light curve amplitudes approximately
independent of wavelength over the IRAC bandpasses. We have constructed models
which simulate the time dependent spectral energy distributions of Class I and
I I YSOs in order to attempt to explain these light curves. Based on these
models, the apparently periodic light curves are best explained by YSO models
where one or two high latitude photospheric spots heat the inner wall of the
circumstellar disk, and where we view the disk at fairly large inclination
angle. Disk inhomogeneities, such as increasing the height where the accretion
funnel flows to the stellar hotspot, enhances the light curve modulations. The
other YSOs in our sample show a range of light curve shapes, some of which are
probably due to varying accretion rate or disk shadowing events. One star,
IC1396A-47, shows a 3.5 hour periodic light curve; this object may be a PMS
Delta Scuti star
Silica in Protoplanetary Disks
Mid-infrared spectra of a few T Tauri stars (TTS) taken with the Infrared
Spectrograph (IRS) on board the Spitzer Space Telescope show prominent narrow
emission features indicating silica (crystalline silicon dioxide). Silica is
not a major constituent of the interstellar medium; therefore, any silica
present in the circumstellar protoplanetary disks of TTS must be largely the
result of processing of primitive dust material in the disks surrouding these
stars. We model the silica emission features in our spectra using the opacities
of various polymorphs of silica and their amorphous versions computed from
earth-based laboratory measurements. This modeling indicates that the two
polymorphs of silica, tridymite and cristobalite, which form at successively
higher temperatures and low pressures, are the dominant forms of silica in the
TTS of our sample. These high temperature, low pressure polymorphs of silica
present in protoplanetary disks are consistent with a grain composed mostly of
tridymite named Ada found in the cometary dust samples collected from the
STARDUST mission to Comet 81P/Wild 2. The silica in these protoplanetary disks
may arise from incongruent melting of enstatite or from incongruent melting of
amorphous pyroxene, the latter being analogous to the former. The high
temperatures of 1200K-1300K and rapid cooling required to crystallize tridymite
or cristobalite set constraints on the mechanisms that could have formed the
silica in these protoplanetary disks, suggestive of processing of these grains
during the transient heating events hypothesized to create chondrules.Comment: 47 pages, 9 figures, to appear in the 1 January, 2009 issue of the
Astrophysical Journa
The Structure of the DoAr 25 Circumstellar Disk
We present high spatial resolution (< 0.3" = 40\Sigma
\propto r^{-p}$ with p = 0.34, significantly less steep than a steady-state
accretion disk (p = 1) or the often adopted minimum mass solar nebula (p =
1.5). Even though the total mass of material is large (M_d = 0.10 M_sun), the
densities inferred in the inner disk for such a model may be too low to
facilitate any mode of planet formation. However, alternative models with
steeper density gradients (p = 1) can explain the observations equally well if
substantial grain growth in the planet formation region (r < 40 AU) has
occurred. We discuss these data in the context of such models with dust
properties that vary with radius and highlight their implications for
understanding disk evolution and the early stages of planet formation.Comment: ApJL in pres
Mid-infrared size survey of Young Stellar Objects: Description of Keck segment-tilting experiment and basic results
The mid-infrared properties of pre-planetary disks are sensitive to the
temperature and flaring profiles of disks for the regions where planet
formation is expected to occur. In order to constrain theories of planet
formation, we have carried out a mid-infrared (wavelength 10.7 microns) size
survey of young stellar objects using the segmented Keck telescope in a novel
configuration. We introduced a customized pattern of tilts to individual mirror
segments to allow efficient sparse-aperture interferometry, allowing full
aperture synthesis imaging with higher calibration precision than traditional
imaging. In contrast to previous surveys on smaller telescopes and with poorer
calibration precision, we find most objects in our sample are partially
resolved. Here we present the main observational results of our survey of 5
embedded massive protostars, 25 Herbig Ae/Be stars, 3 T Tauri stars, 1 FU Ori
system, and 5 emission-line objects of uncertain classification. The observed
mid-infrared sizes do not obey the size-luminosity relation found at
near-infrared wavelengths and a companion paper will provide further modelling
analysis of this sample. In addition, we report imaging results for a few of
the most resolved objects, including complex emission around embedded massive
protostars, the photoevaporating circumbinary disk around MWC 361A, and the
subarcsecond binaries T Tau, FU Ori and MWC 1080.Comment: Accepted by Astrophysical Journal. 38 pages. 9 figure
- …
