We have used Spitzer/IRAC to conduct a photometric monitoring program of the
IC1396A dark globule in order to study the mid-IR (3.6 - 8 micron) variability
of the heavily embedded Young Stellar Objects (YSOs) present in that area. We
obtained light curves covering a 14 day timespan with a twice daily cadence for
69 YSOs, and continuous light curves with approximately 12 second cadence over
7 hours for 38 YSOs. Typical accuracies for our relative photometry were 1-2%
for the long timespan data and a few mmag, corresponding to less than 0.5%, for
the 7 hour continuous "staring-mode" data. More than half of the YSOs showed
detectable variability, with amplitudes from ~0.05 mag to ~0.2 mag. About
thirty percent of the YSOs showed quasi-sinusoidal light curve shapes with
apparent periods from 5-12 days and light curve amplitudes approximately
independent of wavelength over the IRAC bandpasses. We have constructed models
which simulate the time dependent spectral energy distributions of Class I and
I I YSOs in order to attempt to explain these light curves. Based on these
models, the apparently periodic light curves are best explained by YSO models
where one or two high latitude photospheric spots heat the inner wall of the
circumstellar disk, and where we view the disk at fairly large inclination
angle. Disk inhomogeneities, such as increasing the height where the accretion
funnel flows to the stellar hotspot, enhances the light curve modulations. The
other YSOs in our sample show a range of light curve shapes, some of which are
probably due to varying accretion rate or disk shadowing events. One star,
IC1396A-47, shows a 3.5 hour periodic light curve; this object may be a PMS
Delta Scuti star