344 research outputs found

    Modern Radiation Further Improves Survival in Non-Small Cell Lung Cancer: An Analysis of 288,670 Patients

    Get PDF
    Background: Radiation therapy plays an increasingly important role in the treatment of patients with non-small-cell lung cancer (NSCLC). The purpose of the present study is to assess the survival outcomes of radiotherapy treatment compared to other treatment modalities and to determine the potential role of advanced technologies in radiotherapy on improving survival. Methods: We used cancer incidence and survival data from the Surveillance, Epidemiology, and End Results database linked to U.S. Census data to compare survival outcomes of 288,670 patients with stage I-IV NSCLC treated between 1999 and 2008. The primary endpoint was overall survival. Results: Among the 288,670 patients diagnosed with stage I-IV NSCLC, 92,374 (32%) patients received radiotherapy-almost double the number receiving surgery (51,961, 18%). Compared to other treatment groups and across all stages of NSCLC, patients treated with radiotherapy showed greater median and overall survival than patients without radiation treatment (p < 0.0001). Radiotherapy had effectively improved overall survival regardless of age, gender, and histological categorization. Radiotherapy treatment received during the recent time period 2004 - 2008 is correlated with enhanced survival compared to the earlier time period 1999 - 2003. Conclusion: Radiation therapy was correlated with increased overall survival for all patients with primary NSCLC across stages. Combined surgery and radiotherapy treatment also correlates with improved survival, signaling the value of bimodal or multimodal treatments. Population-based increases in overall survival were seen in the recent time period, suggesting the potential role of advanced radiotherapeutic technologies in enhancing survival outcomes for lung cancer patients

    Quantum device fine-tuning using unsupervised embedding learning

    Full text link
    Quantum devices with a large number of gate electrodes allow for precise control of device parameters. This capability is hard to fully exploit due to the complex dependence of these parameters on applied gate voltages. We experimentally demonstrate an algorithm capable of fine-tuning several device parameters at once. The algorithm acquires a measurement and assigns it a score using a variational auto-encoder. Gate voltage settings are set to optimise this score in real-time in an unsupervised fashion. We report fine-tuning times of a double quantum dot device within approximately 40 min

    Deep Reinforcement Learning for Efficient Measurement of Quantum Devices

    Get PDF
    Deep reinforcement learning is an emerging machine learning approach which can teach a computer to learn from their actions and rewards similar to the way humans learn from experience. It offers many advantages in automating decision processes to navigate large parameter spaces. This paper proposes a novel approach to the efficient measurement of quantum devices based on deep reinforcement learning. We focus on double quantum dot devices, demonstrating the fully automatic identification of specific transport features called bias triangles. Measurements targeting these features are difficult to automate, since bias triangles are found in otherwise featureless regions of the parameter space. Our algorithm identifies bias triangles in a mean time of less than 30 minutes, and sometimes as little as 1 minute. This approach, based on dueling deep Q-networks, can be adapted to a broad range of devices and target transport features. This is a crucial demonstration of the utility of deep reinforcement learning for decision making in the measurement and operation of quantum devices

    Machine learning enables completely automatic tuning of a quantum device faster than human experts

    Get PDF
    Variability is a problem for the scalability of semiconductor quantum devices. The parameter space is large, and the operating range is small. Our statistical tuning algorithm searches for specific electron transport features in gate-defined quantum dot devices with a gate voltage space of up to eight dimensions. Starting from the full range of each gate voltage, our machine learning algorithm can tune each device to optimal performance in a median time of under 70 minutes. This performance surpassed our best human benchmark (although both human and machine performance can be improved). The algorithm is approximately 180 times faster than an automated random search of the parameter space, and is suitable for different material systems and device architectures. Our results yield a quantitative measurement of device variability, from one device to another and after thermal cycling. Our machine learning algorithm can be extended to higher dimensions and other technologies

    Modeling Sustainability Reporting with Ternary Attractor Neural Networks

    Full text link
    International Conference on Mining Intelligence and Knowledge Exploration. Cluj-Napoca, Romania, December 20–22, 2018This work models the Corporate Sustainability General Reporting Initiative (GRI) using a ternary attractor network. A dataset of years evolution of the GRI reports for a world-wide set of companies was compiled from a recent work and adapted to match the pattern coding for a ternary attractor network. We compare the performance of the network with a classical binary attractor network. Two types of criteria were used for encoding the ternary network, i.e., a simple and weighted threshold, and the performance retrieval was better for the latter, highlighting the importance of the real patterns’ transformation to the three-state coding. The network exceeds the retrieval performance of the binary network for the chosen correlated patterns (GRI). Finally, the ternary network was proved to be robust to retrieve the GRI patterns with initial noise.This work has been supported by Spanish grants MINECO (http://www.mineco.gob.es/) TIN2014-54580-R, TIN2017-84452-R, and by UAMSantander CEAL-AL/2017-08, and UDLA-SIS.MG.17.02

    Sensitive radio-frequency read-out of quantum dots using an ultra-low-noise SQUID amplifier

    Get PDF
    Fault-tolerant spin-based quantum computers will require fast and accurate qubit readout. This can be achieved using radio-frequency reflectometry given sufficient sensitivity to the change in quantum capacitance associated with the qubit states. Here, we demonstrate a 23-fold improvement in capacitance sensitivity by supplementing a cryogenic semiconductor amplifier with a SQUID preamplifier. The SQUID amplifier operates at a frequency near 200 MHz and achieves a noise temperature below 600 mK when integrated into a reflectometry circuit, which is within a factor 120 of the quantum limit. It enables a record sensitivity to capacitance of 0.07 aF/ \sqrt{Hz}. The setup is used to acquire charge stability diagrams of a gate-defined double quantum dot in a short time with a signal-to-noise ration of about 38 in 1 ÎĽs of integration time

    Report of the Scientific Council Meeting 01 -15 June 2017

    Get PDF
    Council met at the Sobey Building, Saint Mary’s University, Halifax, NS, Canada, during 01 – 15 June 2017, to consider the various matters in its Agenda. Representatives attended from Canada, Denmark (in respect of Faroe Islands and Greenland), the European Union (France, Germany (via WebEx), Portugal, Spain, the United Kingdom and the European Commission), Japan, the Russian Federation and the United States of America. Observers from the Ecology Action Centre and Dalhousie University were also present. The Executive Secretary, Scientific Council Coordinator and other members of the Secretariat were in attendance. The Executive Committee met prior to the opening session of the Council to discuss the provisional agenda and plan of work. The Council was called to order at 1000 hours on 01 June 2017. The provisional agenda was adopted with modification. The Scientific Council Coordinator was appointed the rapporteur. The Council was informed that the meeting was quorate and authorization had been received by the Executive Secretary for proxy votes from the European Union, Denmark (in respect of Faroe Islands and Greenland), Iceland, Japan, Republic of Korea, and Norway. The opening session was adjourned at 1200 hours on 01 June 2017. Several sessions were held throughout the course of the meeting to deal with specific items on the agenda. The Council considered adopted the STACFEN report on 8 June 2017, and the STACPUB, STACFIS and STACREC reports on 15 June 2017. The concluding session was called to order at 0830 hours on 15 June 2017. The Council considered and adopted the report the Scientific Council Report of this meeting of 01 -15 June 2017. The Chair received approval to leave the report in draft form for about two weeks to allow for minor editing and proof-reading on the usual strict understanding there would be no substantive changes. The meeting was adjourned at 1430 hours on 15 June 2017. The Reports of the Standing Committees as adopted by the Council are appended as follows: Appendix I - Report of the Standing Committee on Fisheries Environment (STACFEN), Appendix II - Report of Standing Committee on Publications (STACPUB), Appendix III - Report of Standing Committee on Research Coordination (STACREC), and Appendix IV - Report of Standing Committee on Fisheries Science (STACFIS). The Agenda, List of Research (SCR) and Summary (SCS) Documents, and List of Representatives, Advisers and Experts, are given in Appendix V-VII. The Council’s considerations on the Standing Committee Reports, and other matters addressed by the Council follow in Sections II-XV

    Stability of long-sustained oscillations induced by electron tunneling

    Get PDF
    Self-oscillations are the result of an efficient mechanism generating periodic motion from a constant power source. In quantum devices, these oscillations may arise due to the interaction between single electron dynamics and mechanical motion. Due to the complexity of this mechanism, these self-oscillations may irrupt, vanish, or exhibit a bistable behavior causing hysteresis cycles. We observe these hysteresis cycles and characterize the stability of different regimes in single and double quantum dot configurations. In particular cases, we find these oscillations stable for over 20 seconds, many orders of magnitude above electronic and mechanical characteristic timescales, revealing the robustness of the mechanism at play. The experimental results are reproduced by our theoretical model that provides a complete understanding of bistability in nanoelectromechanical devices.Comment: 11 pages, 10 figures, includes the complete paper and the Supplemental Materia

    Cross-architecture tuning of silicon and SiGe-based quantum devices using machine learning

    Get PDF
    The potential of Si and SiGe-based devices for the scaling of quantum circuits is tainted by device variability. Each device needs to be tuned to operation conditions and each device realisation requires a different tuning protocol. We demonstrate that it is possible to automate the tuning of a 4-gate Si FinFET, a 5-gate GeSi nanowire and a 7-gate Ge/SiGe heterostructure double quantum dot device from scratch with the same algorithm. We achieve tuning times of 30, 10, and 92 min, respectively. The algorithm also provides insight into the parameter space landscape for each of these devices, allowing for the characterization of the regions where double quantum dot regimes are found. These results show that overarching solutions for the tuning of quantum devices are enabled by machine learning
    • …
    corecore