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SUPPLEMENTARY MATERIAL

Supplementary Methods

Devices

The FinFET [1], possesses a fin height of ∼ 15 nm, and
a width of ∼ 20 nm and is defined on a near-intrinsic
silicon substrate by means of electron beam lithography
and dry etching. The gate stack consists of a ∼ 10 nm
thick SiO2 layer, covered by a ∼ 40 nm thick layer of
TiN to form the gate electrodes. The gate widths are
∼ 15 nm, with a gate-to-gate separation of ∼ 35 nm,
except the lead gates (V1 and V4) which have a width of
∼ 500 nm. The source-drain contacts are NiSi Schottky
barriers. The nanowire [2], has a Ge core diameter of ∼
20 nm and a ∼ 2 nm thick Si shell. The five Ti/Pd (1
/12 nm) gate electrodes are lithographically defined on
p++-doped Si substrate covered with 290 nm thermal
oxide. The gates have a width of 20 nm and a pitch of
50 nm. The gates are covered with a 20 nm thick layer
of HfO2. Electrical contact to the nanowire is made via
Ti/Pd (0.5 / 60 nm) ohmic source-drain contacts. The
Ge/SiGe [3] heterostructure (Si0.3Ge0.7/Ge/Si0.3Ge0.7)
has a Ge quantum well thickness of ∼ 20 nm and it is
buried below a ∼ 20 nm thick SiGe spacer. The oxide
is a 20 nm thick layer of Al2O3 and above which reside
Ti/Pd (3 /27 nm) gates each with a width of ∼ 30 nm.
The ohmic contacts are Pt.

3D hypersurface plots

The 3D plot of the hypersurface for each device was
generated by relying on the same method that CATSAI
uses to generate the hypersurface of each device as it
proceeds to coarsely tune it. The main difference being
that no sampling is involved; the surface is generated by a
model that makes use of the pinch-off locations detected
during an algorithm run selected at random (CATSAI run

10). The model of the hypersurface used was a Gaussian
Process (Matern52 Kernel). This model is then used as an
interpolation method to generate the 3D plots; regularly
spaced points in gate voltage space are considered and the
model is used to determine whether these points lie within
the hypersurface. The gate electrodes not considered for
the plots are kept constant at their respective mean gate
voltage values for which pinch-off was observed during
the experiment (Supplementary Table III).

CATSAI’s Workflow

For the first i (12) iterations of the sampling stage
(Supplementary Fig. 1), the algorithm selects a vector u
at random in the gate voltage space of the device since the
algortithm is unaware of the characteristics of the device.
This vector consists of all the gate voltages considered
for tuning. The algorithm then sweeps the gate voltages
along that direction until pinch-off occurs.

After the ith iteration, a model of the hypersurface is
built using a Gaussian process and u is chosen by incor-
porating the knowledge gained during the peak detection
module in the investigation stage. The algorithm achieves
this by generating a set of candidate pinch-off locations
on the hypersurface and using the probability of find-
ing Coulomb peaks in a given location of gate voltage
space, P̃peaks, as a weighting for the choice of u [4]. Using
Thompson sampling, the algorithm then selects one of the
candidate pinch-off locations, defining a new u. In each
of the following iterations, the pinch-off locations and the
information gathered by the peak detection are used to
update the hypersurface model and P̃peaks, respectively.

For the low resolution current map score function in
the investigation stage, the algorithm is given the noise
floor and the current at which Coulomb peaks can be seg-
mented, a current value between the noise floor and the
peak of the Coulomb peaks, the segmentation threshold.
For simplicity, measurements of the safe bounds, noise
floor and segmentation threshold are taken manually be-
fore running CATSAI; these measurements can easily be
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automated.
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Supplementary Figure 1. CATSAI’s workflow. For the
first i iterations (left-hand branch of the sampling stage), the
algorithm selects u at random and travels along it until the
hypersurface is found. After the ith iteration (right-hand
branch of the sampling stage), the algorithm selects u based
on the model it generates of the hypersurface and of the
probability of finding Coulomb peaks in a given location in
gate voltage space, P̃peaks. In the investigation stage the
algorithm sweeps the plunger gates to generate current traces
and low-resolution and high-resolution current maps if the
conditions are satisfied for each classifier. Figure adapted from
[4].

Coulomb peak detector

Due to the different types of current noise observed for
each of the devices considered, a robust Coulomb peak
detector was required. We thus developed a random forest
Coulomb peak classifier.

A set of 128-pixel current traces was obtained running
the tuning algorithm developed by Moon et al. [4] on dif-

ferent devices to those for which CATSAI was tested (Sup-
plementary Table I); two different 5-gate GeSi nanowires
(400 mV-long current traces), and a single 3-gate Si Fin-
FET (200 mV-long current traces). We gathered 1095
current traces from GeSi nanowire device 1, 1321 from
GeSi nanowire device 2, and 4306 from the Si FinFET
device 1. The 6722 current traces were labelled by a single
labeller (Brandon Severin), from which there were 553
labelled as positive (current traces containing Coulomb
peaks) and the remainder (6169 current traces) were la-
belled as negative. 553 negative examples were randomly
picked from the shuffled 6169 negative examples, to make
up an even dataset of 1106 current traces. The breakdown
of the data subsets include, for the positives: 115 traces
from GeSi nanowire device 1, 100 from GeSi nanowire
device 2 and 338 from the Si FinFET device 1. For the
negative subset: 83 from GeSi nanowire device 1, 113
from GeSi nanowire device 2, and 357 from the Si Fin-
FET device 1. Randomly chosen current traces from the
even dataset of 1106 current traces were used to train and
test the random forest Coulomb peak classifier; 70% of the
traces chosen were used to train the classifier, and 30%
were used to test it. No characteristic feature engineering
or data pre-processing was done other than normalisation.
The characteristic features the random forest classifier
was trained on were the normalised current values of each
trace at each pixel point, thus each sample had 128 charac-
teristic features. The classifier relies on the Scikit-learn’s
ensemble RandomForestClassifier package [5]. An accu-
racy of 84% was achieved. The random forest classifier
was then retested on 1562 current traces from a 5-gate
Ge/SiGe heterostructure device 1 and an accuracy of
92% was achieved (Supplementary Table I, Test 2). This
relatively high accuracy contrasts the Coulomb peak de-
tector used in Ref. [4], which achieved an accuracy of 20%
classifying the current traces obtained for the Ge/SiGe
heterostructure device 1.

Coulomb peak detector: online performance

All the current traces after the CATSAI and Random
Search experimental runs were complete were labelled by
Brandon Severin. The actual human labels were compared
against the labels predicted by the random forest Coulomb
peak classifier used in the experiment (Supplementary
Table II). The accuracy of the Coulomb peak detector is as
follows, FinFET: 82.1%, 71.3%, nanowire: 86.0%, 82.3%,
and heterostructure: 63.7%, 79.7% for all the Random
Search and CATSAI runs respectively.

Algorithm configuration for the different type of devices
studied

Across all devices the initialisation of the algorithm is
set to 12 iterations (the first 5% of the total number of
iterations for each run). In this work we did not apply any
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pruning rules [4]. When searching for the hypersurface,
the algorithm looks for current drops below 0.5% of the
maximum current range. The parameters chosen to run
the algorithm can be separately optimised. The model
of the hypersurface is built via a Gaussian Process as in
Ref. [4].

Other configuration parameters depend on the type
of device to be explored (Supplementary Table IV &
V). These parameters include: voltage bounds (origin
and limit) set for each gate electrode to prevent device
damage, the value at which the bias voltage is fixed, the
noise and segmentation thresholds, and the size in gate
voltage space of current traces (diag_trace), as well as
low and high resolution current maps (2d_lowres and
2d_highres, respectively). During the investigation stage
the current traces have a length of 128 pixels, the low
resolution current maps have a size of 16 × 16 pixels, and
the high resolution have a size of 48 × 48 pixels. The
dimensions of the traces and the scans in voltage space
are device dependent (Supplementary Table V).

The bias voltages were chosen to be slightly larger than
typical charging energies expected for single quantum
dots in each device. The noise and segmentation thresh-
olds were chosen according to expected values; these can
easily be replaced by a fixed percentage of the maximum-
minimum current range across devices. The size of current
traces and current maps in the investigation stage was
larger for the GeSi nanowires, since the gate lever arms

in these devices is often smaller compared to the other
devices. These hyperparameters could also be optimised
in future implementations. All hyperparameters were
determined in advance before running the algorithm.

Labelling procedure

The current maps that are classified by the Algorithm
as corresponding to a double dot regime are checked and
labelled by human beings at the end of the experiment to
benchmark the Algorithm’s performance (Supplementary
Table VI & VII). There is often disagreement between
humans about what current maps correspond to a double
quantum dot regime. The current maps for each type of
device were thus labelled by 4 different and independent
human labellers. Three datasets were collected, one for
each device (nanowire, heterostructure and FinFET). For
each device, the current maps collected by Random Search
and CATSAI were grouped together and shuffled to avoid
labellers’ confirmation bias. Median tuning times were
calculated using a Bayesian model based on the resultant
labels as in Ref. [4].
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Supplementary Tables

Device Train Test 1 Test 2 Algorithm run
GeSi Nanowire 0 - - - x
GeSi Nanowire 1 x x - -
GeSi Nanowire 2 x x - -

Si FinFET 0 - - - x
Si FinFET 1 x x - -

Ge/SiGe Heterostructure 0 - - - x
Ge/SiGe Heterostructure 1 - - x -

Supplementary Table I. Devices used throughout this work.
All devices used for training and or testing are different to
the devices used in the experiment. Devices used for the
experiment algorithm runs only are numbered as zero.
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Supplementary Table II. Confusion matrices of the Coulomb peak detector for all of the experimental runs comparing actual
human labels against the predicted labels of the random forest Coulomb Peak detector.

Ge/SiGe Het. (Random Search) Si FinFET (Random Search) GeSi Nanowire (Random Search)
Pred. Neg. Pred. Pos. Pred. Neg. Pred. Pos. Pred. Neg. Pred. Pos.

Act. Neg. 1878 1079 Act. Neg. 2455 512 Act. Neg. 1114 277
Act. Pos. 10 33 Act. Pos. 24 9 Act. Pos. 144 1465

Ge/SiGe Het. (CATSAI) Si FinFET (CATSAI) GeSi Nanowire (CATSAI)
Pred. Neg. Pred. Pos. Pred. Neg. Pred. Pos. Pred. Neg. Pred. Pos.

Act. Neg. 1625 313 Act. Neg. 1862 211 Act. Neg. 156 31
Act. Pos. 199 380 Act. Pos. 651 276 Act. Pos. 501 2312

Supplementary Table III. Bounds used for the 3D hypersurface plots.

Device V1 (V) V2 (V) V3 (V) V4 (V) V5 (V) V6 (V) V7

Si FinFET, origin -6.5 -1.5 -1.5 -5.0 - - -
Si FinFET, limit -2.5 0.0 0.0 -5.0 - - -

GeSi Nanowire, origin 0.0 0.56 0.0 1.1 0.0 - -
GeSi Nanowire, limit 4.0 0.56 2.5 1.1 4.0 - -

Ge/SiGe Heterostructure, origin 0.48 0.0 0.74 0.0 0.79 0.0 0.41
Ge/SiGe Heterostructure, limit 0.48 2.0 0.74 2.0 0.79 2.0 0.41

Supplementary Table IV. Gate voltage space explored by CATSAI and Random Search algorithms for each of the devices
considered.

Device V1 (V) V2 (V) V3 (V) V4 (V) V5 (V) V6 (V) V7 (V)
Si FinFET, origin -6.5 -1.5 -1.5 -6.5 - - -
Si FinFET, limit 0.0 0.0 0.0 0.0 - - -

GeSi Nanowire, origin 0.0 0.0 0.0 0.0 0.0 - -
GeSi Nanowire, limit 4.0 2.5 2.5 4.0 4.0 - -

Ge/SiGe Heterostructure, origin 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Ge/SiGe Heterostructure, limit 2.0 2.0 2.0 2.0 2.0 2.0 2.0

Supplementary Table V. Differences in the configuration of the algorithm for each of the devices considered.

Device Vbias (mV) Noise
Threshold (pA)

Segmentation
Threshold (pA)

diag_trace:
size (mV)

2d_lowres:
size (mV)

2d_highres:
size (mV)

Si FinFET 7.6 2 20 100 80 × 80 120 × 120
GeSi Nanowire 4 2 1000 200 150 × 150 200 × 200

Ge/SiGe Heterostructure 0.5 10 30 100 80 × 80 120 × 120
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Supplementary Table VI. Total number of current maps labelled as positive (i.e. corresponding to the double quantum dot
regime) found by each labeller (Labeller 1, 2, 3, 4) for each device and for each run of CATSAI. Runs marked with an asterisk
were excluded because the cryostat temperature was slightly higher than base temperature.

Experiment Iterations Time (hours) Labeller 1 Labeller 2 Labeller 3 Labeller 4
Si FinFET, run 1 250 3.47 2 2 2 3
Si FinFET, run 2 250 4.17 12 12 10 10
Si FinFET, run 3 250 3.62 5 5 5 5
Si FinFET, run 4 250 4.15 9 6 6 7
Si FinFET, run 5 250 3.30 9 9 6 8
Si FinFET, run 6 250 3.90 9 9 7 9
Si FinFET, run 7 250 3.30 3 2 1 3
Si FinFET, run 8 250 3.86 13 13 7 13
Si FinFET, run 9 250 3.25 4 4 4 4
Si FinFET, run 10 250 3.81 10 11 8 11
Si FinFET, run 11 250 3.57 5 5 5 6
Si FinFET, run 12 250 3.83 13 13 13 13

GeSi Nanowire, run 1 250 8.42 45 58 74 48
GeSi Nanowire, run 2 250 8.26 46 61 80 54
GeSi Nanowire, run 3 250 8.57 38 60 77 49
GeSi Nanowire, run 4 250 9.18 40 64 79 46
GeSi Nanowire, run 5 250 8.21 38 52 73 47
GeSi Nanowire, run 6 250 8.90 38 64 78 54
GeSi Nanowire, run 7 250 8.12 39 46 70 46
GeSi Nanowire, run 8 250 8.68 46 59 79 48
GeSi Nanowire, run 9 250 9.05 50 67 84 48
GeSi Nanowire, run 10 250 9.31 51 64 78 52
GeSi Nanowire, run 11 250 9.38 50 64 82 54
GeSi Nanowire, run 12 250 9.02 43 63 78 55

Ge/SiGe Heterostructure, run 1 250 3.38 2 4 5 3
Ge/SiGe Heterostructure, run 2 250 2.50 2 3 2 2
Ge/SiGe Heterostructure, run 3 250 2.39 1 1 0 1
Ge/SiGe Heterostructure, run 4* 250 3.17 1 2 0 1
Ge/SiGe Heterostructure, run 5 250 3.04 3 2 2 1
Ge/SiGe Heterostructure, run 6 250 3.66 2 3 4 3
Ge/SiGe Heterostructure, run 7 250 3.19 1 1 1 2
Ge/SiGe Heterostructure, run 8 250 2.81 2 1 2 1
Ge/SiGe Heterostructure, run 9 250 3.19 1 1 1 1
Ge/SiGe Heterostructure, run 10 250 3.22 1 0 1 1
Ge/SiGe Heterostructure, run 11 250 2.91 3 4 1 2
Ge/SiGe Heterostructure, run 12 250 3.50 1 2 2 1
Ge/SiGe Heterostructure, run 13* 250 3.42 2 2 2 3
Ge/SiGe Heterostructure, run 14* 250 3.31 4 3 5 3
Ge/SiGe Heterostructure, run 15 250 2.99 3 4 4 4
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Supplementary Table VII. Total number of current maps labelled as positive (i.e. corresponding to the double quantum dot
regime) found by each labeller (Labeller 1, 2, 3, 4) for each device and for each run of Random Search. Runs marked with a an
asterisk were excluded because the cryostat temperature was slightly higher than base temperature.

Experiment Iterations Time (hours) Labeller 1 Labeller 2 Labeller 3 Labeller 4
Si FinFET, run 1 250 1.62 0 0 0 0
Si FinFET, run 2 250 1.68 0 0 0 0
Si FinFET, run 3 250 1.69 0 0 0 0
Si FinFET, run 4 250 1.58 0 0 0 0
Si FinFET, run 5 250 1.64 0 0 0 0
Si FinFET, run 6 250 1.62 0 0 0 0
Si FinFET, run 7 250 1.51 0 0 0 0
Si FinFET, run 8 250 1.45 0 0 0 0
Si FinFET, run 9 250 1.49 0 0 0 0
Si FinFET, run 10 250 1.52 0 0 0 0
Si FinFET, run 11 250 1.63 0 0 0 0
Si FinFET, run 12 250 1.56 0 0 0 0

GeSi Nanowire, run 1 250 4.40 11 18 23 15
GeSi Nanowire, run 2 250 4.06 5 13 20 10
GeSi Nanowire, run 3 250 4.44 9 17 28 11
GeSi Nanowire, run 4 250 3.82 3 12 21 8
GeSi Nanowire, run 5 250 4.66 12 20 30 14
GeSi Nanowire, run 6 250 4.58 10 22 32 17
GeSi Nanowire, run 7 250 4.17 11 11 22 13
GeSi Nanowire, run 8 250 3.92 7 14 21 10
GeSi Nanowire, run 9 250 4.53 14 23 30 17
GeSi Nanowire, run 10 250 4.37 12 19 23 16
GeSi Nanowire, run 11 250 4.59 11 20 30 14
GeSi Nanowire, run 12 250 4.21 19 23 28 18

Ge/SiGe Heterostructure, run 1 250 2.22 1 1 1 1
Ge/SiGe Heterostructure, run 2 250 1.83 0 0 0 0
Ge/SiGe Heterostructure, run 3 250 1.82 0 0 0 0
Ge/SiGe Heterostructure, run 4 250 1.85 0 0 0 0
Ge/SiGe Heterostructure, run 5 250 1.89 0 1 0 0
Ge/SiGe Heterostructure, run 6 250 1.82 0 0 0 0
Ge/SiGe Heterostructure, run 7 250 1.72 0 0 0 0
Ge/SiGe Heterostructure, run 8 250 1.68 0 0 0 0
Ge/SiGe Heterostructure, run 9 250 1.69 1 2 1 1
Ge/SiGe Heterostructure, run 10 250 1.81 0 0 0 0
Ge/SiGe Heterostructure, run 11 250 1.95 0 0 0 0
Ge/SiGe Heterostructure, run 12 250 1.52 1 1 1 1
Ge/SiGe Heterostructure, run 13* 250 1.64 0 0 1 0
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