1,780 research outputs found

    One size does not fit all

    Get PDF
    Comparing the anatomies of more than 100 different species of ants reveals that worker ants have enlarged necks, not seen in queens, that allow them to lift and carry objects many times heavier than themselves

    What We Have Also Learned: Adaptive Speciation is Theoretically Possible

    Get PDF
    A recent Perspectives article by Gavrilets (2003) on the theory of speciation ignored advances in understanding processes of adaptive speciation, in which the splitting of lineages is an adaptation caused by frequency-dependent selection. Adaptive, or sympatric, speciation has been modeled since the 1960s, but the large amount of attention from both empirical and theoretical biologists that adaptive speciation has received in recent years goes far beyond what was described in Gavrilets' paper. Due to conceptual advances based on the theory of adaptive dynamics, adaptive speciation has emerged as a theoretically plausible evolutionary process that can occur in many different ecological settings

    Site-selective adsorption of naphthalene-tetracarboxylic-dianhydride on Ag(110): First-principles calculations

    Full text link
    The mechanism of adsorption of the 1,4,5,8-naphthalene-tetracarboxylic-dianhydride (NTCDA) molecule on the Ag(110) surface is elucidated on the basis of extensive density functional theory calculations. This molecule, together with its perylene counterpart, PTCDA, are archetype organic semiconductors investigated experimentally over the past 20 years. We find that the bonding of the molecule to the substrate is highly site-selective, being determined by electron transfer to the LUMO of the molecule and local electrostatic attraction between negatively charged carboxyl oxygens and positively charged silver atoms in [1-10] atomic rows. The adsorption energy in the most stable site is 0.9eV. A similar mechanism is expected to govern the adsorption of PTCDA on Ag(110) as well.Comment: 8 pages, 4 figures, high-quality figures available upon reques

    A role for ultrasonic vocalisation in social communication and divergence of natural populations of the house mouse (Mus musculus domesticus)

    No full text
    It has long been known that rodents emit signals in the ultrasonic range, but their role in social communication and mating is still under active exploration. While inbred strains of house mice have emerged as a favourite model to study ultrasonic vocalisation (USV) patterns, studies in wild animals and natural situations are still rare. We focus here on two wild derived mouse populations. We recorded them in dyadic encounters for extended periods of time to assess possible roles of USVs and their divergence between allopatric populations. We have analysed song frequency and duration, as well as spectral features of songs and syllables. We show that the populations have indeed diverged in several of these aspects and that USV patterns emitted in a mating context differ from those emitted in same sex encounters. We find that females vocalize not less, in encounters with another female even more than males. This implies that the current focus of USVs being emitted mainly by males within the mating context needs to be reconsidered. Using a statistical syntax analysis we find complex temporal sequencing patterns that could suggest that the syntax conveys meaningful information to the receivers. We conclude that wild mice use USV for complex social interactions and that USV patterns can diverge fast between populations

    Eurasian house mouse (Mus musculus L.) differentiation at microsatellite loci identifies the Iranian plateau as a phylogeographic hotspot

    Get PDF
    Background: The phylogeography of the house mouse (Mus musculus L.), an emblematic species for genetic and biomedical studies, is only partly understood, essentially because of a sampling bias towards its most peripheral populations in Europe, Asia and the Americas. Moreover, the present-day phylogeographic hypotheses stem mostly from the study of mitochondrial lineages. In this article, we complement the mtDNA studies with a comprehensive survey of nuclear markers (19 microsatellite loci) typed in 963 individuals from 47 population samples, with an emphasis on the putative Middle-Eastern centre of dispersal of the species. Results: Based on correspondence analysis, distance and allele-sharing trees, we find a good coherence between geographical origin and genetic make-up of the populations. We thus confirm the clear distinction of the three best described peripheral subspecies, M. m. musculus, M. m. domesticus and M. m. castaneus. A large diversity was found in the Iranian populations, which have had an unclear taxonomic status to date. In addition to samples with clear affiliation to M. m. musculus and M. m. domesticus, we find two genetic groups in Central and South East Iran, which are as distinct from each other as they are from the south-east Asian M. m. castaneus. These groups were previously also found to harbor distinct mitochondrial haplotypes. Conclusion: We propose that the Iranian plateau is home to two more taxonomic units displaying complex primary and secondary relationships with their long recognized neighbours. This central region emerges as the area with the highest known diversity of mouse lineages within a restricted geographical area, designating it as the focal place to study the mechanisms of speciation and diversification of this species

    A de novo evolved gene in the house mouse regulates female pregnancy cycles

    No full text
    The de novo emergence of new genes has been well documented through genomic analyses. However, a functional analysis, especially of very young protein-coding genes, is still largely lacking. Here, we identify a set of house mouse-specific protein-coding genes and assess their translation by ribosome profiling and mass spectrometry data. We functionally analyze one of them, ̑extitGm13030}, which is specifically expressed in females in the oviduct. The interruption of the reading frame affects the transcriptional network in the oviducts at a specific stage of the estrous cycle. This includes the upregulation of ̑extit{Dcpp} genes, which are known to stimulate the growth of preimplantation embryos. As a consequence, knockout females have their second litters after shorter times and have a higher infanticide rate. Given that ̑extit{Gm13030 shows no signs of positive selection, our findings support the hypothesis that a de novo evolved gene can directly adopt a function without much sequence adaptation

    A Generalized Diffusion Tensor for Fully Anisotropic Diffusion of Energetic Particles in the Heliospheric Magnetic Field

    Full text link
    The spatial diffusion of cosmic rays in turbulent magnetic fields can, in the most general case, be fully anisotropic, i.e. one has to distinguish three diffusion axes in a local, field-aligned frame. We reexamine the transformation for the diffusion tensor from this local to a global frame, in which the Parker transport equation for energetic particles is usually formulated and solved. Particularly, we generalize the transformation formulas to allow for an explicit choice of two principal local perpendicular diffusion axes. This generalization includes the 'traditional' diffusion tensor in the special case of isotropic perpendicular diffusion. For the local frame, we motivate the choice of the Frenet-Serret trihedron which is related to the intrinsic magnetic field geometry. We directly compare the old and the new tensor elements for two heliospheric magnetic field configurations, namely the hybrid Fisk and the Parker field. Subsequently, we examine the significance of the different formulations for the diffusion tensor in a standard 3D model for the modulation of galactic protons. For this we utilize a numerical code to evaluate a system of stochastic differential equations equivalent to the Parker transport equation and present the resulting modulated spectra. The computed differential fluxes based on the new tensor formulation deviate from those obtained with the 'traditional' one (only valid for isotropic perpendicular diffusion) by up to 60% for energies below a few hundred MeV depending on heliocentric distance.Comment: 8 pages, 6 figures, accepted in Ap

    Growth rates of the Weibel and tearing mode instabilities in a relativistic pair plasma

    Full text link
    We present an algorithm for solving the linear dispersion relation in an inhomogeneous, magnetised, relativistic plasma. The method is a generalisation of a previously reported algorithm that was limited to the homogeneous case. The extension involves projecting the spatial dependence of the perturbations onto a set of basis functions that satisfy the boundary conditions (spectral Galerkin method). To test this algorithm in the homogeneous case, we derive an analytical expression for the growth rate of the Weibel instability for a relativistic Maxwellian distribution and compare it with the numerical results. In the inhomogeneous case, we present solutions of the dispersion relation for the relativistic tearing mode, making no assumption about the thickness of the current sheet, and check the numerical method against the analytical expression.Comment: Accepted by PPC

    Early propagation of energetic particles across the mean field in turbulent plasmas

    Get PDF
    Propagation of energetic particles across the mean field direction in turbulent magnetic fields is often described as spatial diffusion. Recently, it has been suggested that initially the particles prop- agate systematically along meandering field lines, and only later reach the time-asymptotic diffusive cross-field propagation. In this paper, we analyse cross-field propagation of 1–100 MeV protons in composite 2D-slab turbulence superposed on a constant background magnetic field, using full-orbit particle simulations, to study the non-diffusive phase of particle propagation with a wide range of turbulence parameters. We show that the early-time non-diffusive propagation of the particles is consistent with particle propagation along turbulently meandering field lines. This results in a wide cross-field extent of the particles already at the initial arrival of particles to a given distance along the mean field direction, unlike when using spatial diffusion particle transport models. The cross-field extent of the particle distribution remains constant for up to tens of hours in turbulence environ- ment consistent with the inner heliosphere during solar energetic particle events. Subsequently, the particles escape from their initial meandering field lines, and the particle propagation across the mean field reaches time-asymptotic diffusion. Our analysis shows that in order to understand so- lar energetic particle event origins, particle transport modelling must include non-diffusive particle propagation along meandering field lines. Key words: Sun: particle emission – diffusion – magnetic fields – turbulenc
    corecore