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In a recent article in Evolution entitled “Models of speciation: what have we learned in 

40 years?” Gavrilets (2003) aimed at reviewing the insights that evolutionary biologists 

have gleaned from mathematical models of speciation over the past decades. Despite this 

nominal ambition, there have been important developments in speciation research that 

were barely touched on in Gavrilets’ review. 

Our aim here is not to point out factual errors in Gavrilets’ article, but to highlight 

crucial omissions. In particular, we focus on the innovations brought about by research 

into adaptive speciation, which in our opinion have received unduly short shrift in 

Gavrilets’ article. In general, the past years have seen a systematic shift in speciation 

research from the traditional emphasis on geographical patterns of speciation to a broader 

perspective of stressing the mechanisms and processes of evolutionary diversification 

(e.g., Schluter 2000, Kondrashov 2001, Mallet 2001, Via 2001). These processes include 

adaptive speciation, in which the splitting of lineages is an adaptive response to 

disruptive selection driven by biological interactions. Based on the modeling effort of a 

whole group of scientists it has by now become clear that adaptive speciation is a 

plausible evolutionary process in many different evolutionary scenarios (e.g., Metz et al. 

1996, Doebeli 1996, Meszéna et al. 1997, Geritz et al. 1998, Kisdi 1999, Dieckmann and 

Doebeli 1999, Higashi et al. 1999, Kondrashov and Kondrashov 1999, Kisdi and Geritz 

1999, Drossel and McKane 2000, Geritz and Kisdi 2000, Doebeli and Dieckmann 2000, 

Law et al. 2001, Kaneko and Yomo 2002, Mizera and Meszéna 2003, Doebeli and 

Dieckmann 2003, Van Doorn et al. 2004). 

Adaptive speciation requires ecological contact between the diverging lineages 

and is therefore often equated with sympatric speciation, even though disruptive selection 
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can also be a potent driver of speciation in parapatry. The possibility of adaptive 

speciation has been dismissed by Mayr (1963) and Dobzhansky (1970) as a plausible 

alternative to speciation through isolation by distance. The question of whether speciation 

under conditions of ecological contact, without isolation by distance, is a theoretically 

plausible evolutionary process hinges upon two key factors: first, on the ecological 

conditions under which frequency-dependent interactions are likely to generate disruptive 

selection, and second, on the evolution of assortative mating mechanisms in populations 

experiencing disruptive selection. 

Investigating, by means of models, the ecological conditions under which 

sympatric speciation can occur has a long tradition that started with Maynard Smith 

(1966). The bulk of such models rely on rather simple genetic and ecological 

assumptions, typically involving two discrete ecological character states corresponding to 

two discrete ecological niches, and one or two loci determining mate choice (see 

Kawecki 2004 for a review). The model by Udovic (1980) that Gavrilets discusses in his 

article is an example of this class of models, as are most models for sympatric host-race 

formation (e.g., Diehl and Bush 1989, but see Fry 2003). It is known that the conditions 

for the maintenance of disruptive selection are restrictive in such models (Kawecki 

2004). Together with the fact that the ecological assumptions in these models often 

appear to be rather special anyway, this has contributed to the perception that the origin 

and maintenance of diversity due to frequency-dependent selection requires special 

circumstances (e.g., Kassen 2002). 

Extending earlier approaches toward more realistic (and, at the same time, more 

general) ecological settings by introducing the notion of competitive speciation, 
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Rosenzweig (1978) provided a conceptual framework for thinking about how frequency-

dependent selection on quantitative characters determining the utilization of continuously 

distributed resources (or niches) could lead to adaptive diversification. However, this 

promising line of research was rarely taken up in subsequent mathematical models of 

speciation, with Seger (1985) and Doebeli (1996) representing two of the few exceptions. 

A second line of research was opened by Christiansen (1991), Brown & Pavlovic (1992), 

and Abrams et al. (1993), who showed how the evolution of quantitative characters 

driven by frequency-dependent ecological interactions can converge on points in 

phenotype space at which selection turns disruptive. However, at the time these 

seemingly disparate examples were not yet recognized as special cases of a general 

principle. Moreover, these studies did not actually address the problem of speciation, 

restricting attention to the emergence of disruptive selection. 

Even if a population does experience persistent disruptive selection, adaptive 

speciation in sexual populations requires the evolution of assortative mating mechanisms. 

Assortative mating can either be directly based on the ecological trait that is under 

disruptive selection, or it can be based on ecologically neutral marker traits, a distinction 

that corresponds to the 1-allele and 2-allele models of Felsenstein (1981) (for reviews see 

Kirkpatrick and Ravigné 2002, and Dieckmann and Doebeli 2004). When assortative 

mating is based on marker traits, a linkage disequilibrium between these marker traits and 

the ecological trait must develop for assortativeness to be able to latch onto the ecological 

trait. It has long been thought that this requirement significantly hinders adaptive 

speciation (Felsenstein 1981). 
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However, in recent years substantial progress has been made with regard to both 

understanding the ecological conditions of adaptive diversification, and the evolution of 

assortative mating mechanisms. In particular, we think that fundamental advances have 

been made with regard to the first aspect: the mathematical theory of adaptive dynamics 

(Metz et al. 1992, 1996, Dieckmann and Law 1996, Geritz et al. 1997, 1998) has 

provided a general framework for studying the emergence of disruptive selection induced 

by ecological interactions, which is embodied by the concept of evolutionary branching 

(Metz et al. 1996, Geritz et al. 1998). Evolutionary branching points are phenotypes 

characterized by a set of general and simple mathematical conditions that determine when 

directional selection can lead to disruptive selection and, further, to the emergence of 

protected dimorphisms. These conditions can be applied to any particular ecological 

scenario that may underlie the adaptive evolution of quantitative traits. Therefore, the 

concept of evolutionary branching serves as a potentially unifying principle for 

identifying the ecological conditions of adaptive diversification. Based on this principle, 

a multitude of theoretical studies in different evolutionary contexts have provided 

analytical results about the conditions under which adaptive splitting is likely to occur; 

see Kisdi and Gyllenberg (2004) for an overview of pertinent studies. Thus, adaptive 

dynamics theory allows us to discover the potential richness of adaptive speciation 

processes: based on the analytical conditions required for evolutionary branching it has 

become clear that ecological conditions for adaptive diversification are, as far as we can 

tell from theoretical studies, truly ubiquitous (see also Doebeli and Dieckmann 2000). 

With regard to the second aspect of adaptive speciation, i.e., the evolution of 

assortative mating and reproductive isolation, two studies by Kondrashov and 
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Kondrashov (1999) and by Dieckmann and Doebeli (1999) have shown that in models 

with more realistic genetic assumptions than were used earlier on, adaptive speciation is a 

plausible process, even when only allowing for indirect assortative mating based on 

ecologically neutral marker traits. Thus, the conditions for the evolution of assortative 

mating under frequency-dependent disruptive selection are clearly less restrictive than 

earlier, simpler models had suggested. It also turns out that this conclusion is robust with 

regard to various changes in model assumptions, including costs of assortative mating 

(Bolnick 2004, Doebeli and Dieckmann 2004, Doebeli 2004).  

The flurry of recent theoretical papers on the possibility of adaptive speciation 

reflects the fact that evolutionary biologists from all walks have started to realize that 

frequency-dependent selection can induce adaptive diversification, and that requirements 

for such processes are less restrictive than past dogma had us believe (e.g., Via 2001, 

Turelli et al. 2001). In his review, Gavrilets questions the value of the corresponding 

“dozens of new modeling papers” by suggesting that it is obvious that “selection 

promotes speciation”. However, only a short while ago the possibility of adaptive 

speciation seemed far from obvious to many evolutionary biologists. Traditionally, only 

two mechanisms were considered through which selection could facilitate speciation: 

first, local adaptation in geographically segregated populations might accelerate the 

build-up of reproductive incompatibilities due to pre- or postzygotic isolation 

mechanisms, and second, reinforcement upon secondary contact might enhance an 

already existing level of reproductive isolation (see, e.g., the review by Turelli et al. 

2001). Overcoming this unnecessarily narrow perspective on the interplay between 

adaptation and speciation required exactly the flurry of papers that Gavrilets bemoans, 
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and the extent of this research activity is simply a consequence of speciation research 

being freed, after decades, from what one might portray as the ‘shackles of allopatry.’ 

In our opinion, the big news in recent speciation research is that many different 

ecological selection scenarios can easily give rise to selection pressures under which 

adaptive speciation is likely to occur. Understanding how these selective scenarios 

emerge from biological interactions is as important as understanding how the ensuing 

split into reproductively isolated subunits unfolds genetically. Ignoring this by focusing 

solely on traditional population genetic approaches and on traditional geographical 

classifications does not do justice to the exciting and dynamic state of the field. In 

particular, resurrecting an ecological perspective on speciation holds many promises for 

tying in speciation research with modern empirical and experimental approaches (e.g., 

Schluter 1994, Rainey and Travisano 1998, Schliewen et al. 2001, Friesen et al. 2004). 

Contrary to what Gavrilets alleges in his review, the recent modeling efforts have 

indeed led to many analytical results. In fact, adaptive dynamics theory is exactly the 

kind of framework that yields analytical results similar to those presented by Gavrilets 

(2003) in his last example, and it is able to deliver such insights in a vast variety of 

different ecological and behavioral settings (see, e.g., Metz et al. 1996, Geritz at al. 1998, 

Kisdi and Geritz 1999, Doebeli and Dieckmann 2000). This is what one would want from 

a general theory. The bulk of analytical results obtained so far concern the ecological 

conditions for adaptive diversification, i.e., the existence or not of evolutionary branching 

points. Analytical results concerning the evolution of assortative mating mechanisms in 

multi-locus models for sexual populations are generally hard to come by. However, it 

should be pointed out that extensive numerical simulations can also yield complete 



 

 8

classifications of system behavior (e.g., Doebeli and Dieckmann 2003), and can lead to 

statements that are just as universal as those derived by purely analytical means. Overall, 

given the many analytical results about conditions for diversification obtained using 

adaptive dynamics theory, we cannot agree with Gavrilets’ assessment that “What is 

missing in the theoretical speciation research are general and transparent analytical 

results comparable to those in other areas of theoretical population genetics and ecology.” 

Besides the fact that we now have a comprehensive mathematical framework that 

explains why adaptive diversification should be a ubiquitous and robust process, general 

analytical results have been obtained both for ecological and for sexual selection (e.g., 

Doebeli and Dieckmann 2000, Van Doorn et al. 2004). 

Many empiricists have welcomed these new theoretical developments. Results 

from adaptive dynamics theory have shed new light on existing empirical work (e.g., 

Schluter 1994, Schliewen et al. 1994, Rosenzweig et al. 1994 (see Doebeli 2002), 

Johanneson et al. 1995, Skúlason et al. 1995, Treves et al. 1998, Rainey and Travisano 

1998, Schliewen at al. 2001, Jiggins and Mallet 2001, Jones et al. 2003), and have 

inspired new empirical work that tests the theoretical predictions, both by analyzing 

existing data (e.g., Bolnick et al. 2003) and by using evolutionary experiments (e.g., 

Bolnick 2001, Friesen at al. 2004). 

In addition, having available a general theoretical framework allows us to 

compare adaptive speciation with other processes of evolutionary diversification, such as 

the evolution of sexual dimorphism (Bolnick and Doebeli 2003, Van Dooren et al., 

submitted) or the evolution of ecological niche widths (Egas et al., submitted, Ackermann 

and Doebeli, submitted). With time, these efforts are likely to yield a fairly complete 
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picture about the likelihood of adaptive speciation in various scenarios of ecological and 

sexual selection. In the end, theoretical advances have to be brought to fruition by 

modifying general theory so that it yields models that are applicable to particular 

situations. A multitude of models is needed to reflect the complexity of speciation, and 

specificity is not a problem if the models can be understood within a common conceptual 

framework. Excising such healthy pluralism from speciation research would seem 

unwise. 

In this note, we did not endeavor to reflect all of theoretical speciation research. 

Instead we took a necessarily biased view by concentrating on the innovations brought 

about by research into adaptive speciation. It has become clear that the traditional 

geographical classification of speciation modes is no longer appropriate to capture the 

essential complexity of many speciation processes (e.g., Mizera and Meszéna 2003, 

Doebeli and Dieckmann 2003). By emphasizing adaptive processes rather than restricting 

attention to biogeographical patterns of diversification, theoretical and experimental 

speciation research have taken off again to new shores. These exciting developments 

were ignored in the review by Gavrilets. There are other omissions in Gavrilets’ article, 

most notably perhaps the body of theory pertaining to the problem of reinforcement (e.g., 

Liou and Price 1994, Kirkpatrick and Servedio 1999, Servedio 2000). Reinforcement is 

of fundamental importance for many processes of ecological speciation as defined by 

Schluter (Schluter 2000; see also the Introduction in Dieckmann at al. 2004), and is 

related to the problem of the evolution of assortative mating mechanisms in processes of 

adaptive speciation. This further illustrates that Gavrilets’ adherence to an old 

geographical classification of speciation that is fraught with problems, and the omission 
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of whole bodies of work that have reinvigorated speciation research in the last decade, 

led to an unproductive bias on the representation of the field. While there is nothing 

wrong with Gavrilets reviewing his own contributions to speciation theory, which are 

substantial, we feel that a broader representation of an exciting and reinvigorated field 

would have been appropriate. 
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