1,343 research outputs found
Recommended from our members
Implementation research for the prevention of antimicrobial resistance and healthcare-associated infections; 2017 Geneva infection prevention and control (IPC)-think tank (part 1)
Background
Around 5–15% of all hospital patients worldwide suffer from healthcare-associated infections (HAIs), and years of excessive antimicrobial use in human and animal medicine have created emerging antimicrobial resistance (AMR). A considerable amount of evidence-based measures have been published to address these challenges, but the largest challenge seems to be their implementation.
Methods
In June 2017, a total of 42 experts convened at the Geneva IPC-Think Tank to discuss four domains in implementation science: 1) teaching implementation skills; 2) fostering implementation of IPC and antimicrobial stewardship (AMS) by policy making; 3) national/international actions to foster implementation skills; and 4) translational research bridging social sciences and clinical research in infection prevention and control (IPC) and AMR.
Results
Although neglected in the past, implementation skills have become a priority in IPC and AMS. They should now be part of any curriculum in health care, and IPC career paths should be created. Guidelines and policies should be aligned with each other and evidence-based, each document providing a section on implementing elements of IPC and AMS in patient care. International organisations should be advocates for IPC and AMS, framing them as patient safety issues and emphasizing the importance of implementation skills. Healthcare authorities at the national level should adopt a similar approach and provide legal frameworks, guidelines, and resources to allow better implementation of patient safety measures in IPC and AMS. Rather than repeating effectiveness studies in every setting, we should invest in methods to improve the implementation of evidence-based measures in different healthcare contexts. For this, we need to encourage and financially support collaborations between social sciences and clinical IPC research.
Conclusions
Experts of the 2017 Geneva Think Tank on IPC and AMS, CDC, and WHO agreed that sustained efforts on implementation of IPC and AMS strategies are required at international, country, and hospital management levels, to provide an adequate multimodal framework that addresses (not exclusively) leadership, resources, education and training for implementing IPC and AMS. Future strategies can build on this agreement to make strategies on IPC and AMS more effective
Cultivating equality: delivering just and sustainable food systems in a changing climate
T
oday, the world faces a greater challenge perhaps than ever before:
tackling hunger and malnutrition in the face of climate change
and increasing natural resource scarcity. Civil society, governments,
researchers, donors, and the private sector are simultaneously debating
and collaborating to find solutions. But the dialogue is over-emphasizing
food production.
Improving yields is important, particularly in places where there is not
enough food or where food producers live in poverty. But simply producing
more is not enough to tackle hunger. Furthermore, acknowledging that
lack of food is not the sole cause of hunger is important. Inequality
shapes who has access to food and the resources to grow it and buy it.
It governs who eats first and who eats worst. Inequality determines who
can adapt more readily to a changing climate. Hunger and poverty are
not an accident – they are the result of social and economic injustice and
inequality at all levels, from household to global. The reality of inequality
is no truer for anyone than it is for women – half the world’s population,
with far less than their fair share of the world’s resources.
If we are to achieve the new Sustainable Development Goal of ending
hunger by 2030, we must address the underlying inequalities in food
systems. In a changing climate, agriculture and food systems must be
sustainable and productive – but our efforts cannot end there. They
must be profitable for those for whom it is a livelihood; they must be
equitable, to facilitate a level playing field in the market, to secure rights
to resources for food producers, and to ensure access to nutritious food for
all; they must be resilient to build the capacity of populations vulnerable
to economic shocks, political instability, and increasing, climate-induced
natural hazards to recover and still lift themselves out of poverty
DIP-2 suppresses ectopic neurite sprouting and axonal regeneration in mature neurons.
Neuronal morphology and circuitry established during early development must often be maintained over the entirety of animal lifespans. Compared with neuronal development, the mechanisms that maintain mature neuronal structures and architecture are little understood. The conserved disco-interacting protein 2 (DIP2) consists of a DMAP1-binding domain and two adenylate-forming domains (AFDs). We show that the Caenorhabditis elegans DIP-2 maintains morphology of mature neurons. dip-2 loss-of-function mutants display a progressive increase in ectopic neurite sprouting and branching during late larval and adult life. In adults, dip-2 also inhibits initial stages of axon regeneration cell autonomously and acts in parallel to DLK-1 MAP kinase and EFA-6 pathways. The function of DIP-2 in maintenance of neuron morphology and in axon regrowth requires its AFD domains and is independent of its DMAP1-binding domain. Our findings reveal a new conserved regulator of neuronal morphology maintenance and axon regrowth after injury
Autonomous detection and anticipation of jam fronts from messages propagated by inter-vehicle communication
In this paper, a minimalist, completely distributed freeway traffic
information system is introduced. It involves an autonomous, vehicle-based jam
front detection, the information transmission via inter-vehicle communication,
and the forecast of the spatial position of jam fronts by reconstructing the
spatiotemporal traffic situation based on the transmitted information. The
whole system is simulated with an integrated traffic simulator, that is based
on a realistic microscopic traffic model for longitudinal movements and lane
changes. The function of its communication module has been explicitly validated
by comparing the simulation results with analytical calculations. By means of
simulations, we show that the algorithms for a congestion-front recognition,
message transmission, and processing predict reliably the existence and
position of jam fronts for vehicle equipment rates as low as 3%. A reliable
mode of operation already for small market penetrations is crucial for the
successful introduction of inter-vehicle communication. The short-term
prediction of jam fronts is not only useful for the driver, but is essential
for enhancing road safety and road capacity by intelligent adaptive cruise
control systems.Comment: Published in the Proceedings of the Annual Meeting of the
Transportation Research Board 200
Summer CO2 evasion from streams and rivers in the Kolyma River basin, north-east Siberia
Inland water systems are generally supersaturated in carbon dioxide (CO2) and are increasingly recognized as playing an important role in the global carbon cycle. The Arctic may be particularly important in this respect, given the abundance of inland waters and carbon contained in Arctic soils; however, a lack of trace gas measurements from small streams in the Arctic currently limits this understanding.We investigated the spatial variability of CO2 evasion during the summer low-flow period from streams and rivers in the northern portion of the Kolyma River basin in north-eastern Siberia. To this end, partial pressure of carbon dioxide (pCO2) and gas exchange velocities (k) were measured at a diverse set of streams and rivers to calculate CO2 evasion fluxes.
We combined these CO2 evasion estimates with satellite remote sensing and geographic information system techniques to calculate total areal CO2 emissions. Our results show that small streams are substantial sources of atmospheric CO2 owing to high pCO2 and k, despite being a small portion of total inland water surface area. In contrast, large rivers were generally near equilibrium with atmospheric CO2. Extrapolating our findings across the Panteleikha-Ambolikha sub-watersheds demonstrated that small streams play a major role in CO2 evasion, accounting for 86% of the total summer CO2 emissions from inland waters within these two sub-watersheds. Further expansion of these regional CO2 emission estimates across time and space will be critical to accurately quantify and understand the role of Arctic streams and rivers in the global carbon budget
The cardiac work-loop technique:An in vitro model for identifying and profiling drug-induced changes in inotropy using rat papillary muscles
Linking high-frequency DOC dynamics to the age of connected water sources
Acknowledgments The authors would like to thank our NRI colleagues for all their help with field and laboratory work, especially Audrey Innes, Jonathan Dick, and Ann Porter. We would like to also thank Iain Malcolm (Marine Scotland Science) for providing AWS data and the European Research Council ERC (project GA 335910 VEWA) for funding the VeWa project. Please contact the authors for access to the data used in this paper. We would also like to thank the Natural Environment Research Council NERC (project NE/K000268/1) for funding.Peer reviewedPublisher PD
Dynamics of dental evolution in ornithopod dinosaurs.
Ornithopods were key herbivorous dinosaurs in Mesozoic terrestrial ecosystems, with a variety of tooth morphologies. Several clades, especially the 'duck-billed' hadrosaurids, became hugely diverse and abundant almost worldwide. Yet their evolutionary dynamics have been disputed, particularly whether they diversified in response to events in plant evolution. Here we focus on their remarkable dietary adaptations, using tooth and jaw characters to examine changes in dental disparity and evolutionary rate. Ornithopods explored different areas of dental morphospace throughout their evolution, showing a long-term expansion. There were four major evolutionary rate increases, the first among basal iguanodontians in the Middle-Late Jurassic, and the three others among the Hadrosauridae, above and below the split of their two major clades, in the middle of the Late Cretaceous. These evolutionary bursts do not correspond to times of plant diversification, including the radiation of the flowering plants, and suggest that dental innovation rather than coevolution with major plant clades was a major driver in ornithopod evolution
- …
