622 research outputs found

    The Chemical and Dynamical Evolution of Isolated Dwarf Galaxies

    Full text link
    Using a suite of simulations (Governato et al. 2010) which successfully produce bulgeless (dwarf) disk galaxies, we provide an analysis of their associated cold interstellar media (ISM) and stellar chemical abundance patterns. A preliminary comparison with observations is undertaken, in order to assess whether the properties of the cold gas and chemistry of the stellar components are recovered successfully. To this end, we have extracted the radial and vertical gas density profiles, neutral hydrogen velocity dispersion, and the power spectrum of structure within the ISM. We complement this analysis of the cold gas with a brief examination of the simulations' metallicity distribution functions and the distribution of alpha-elements-to-iron.Comment: To appear in the proceedings of the JENAM 2010 Symposium "Dwarf Galaxies: Keys to Galaxy Formation and Evolution" (Lisbon, 9-10 September 2010), P. Papaderos, S. Recchi, G. Hensler (eds.), Springer Verlag (2011), in pres

    Ring Star Formation Rates in Barred and Nonbarred Galaxies

    Full text link
    Nonbarred ringed galaxies are relatively normal galaxies showing bright rings of star formation in spite of lacking a strong bar. This morphology is interesting because it is generally accepted that a typical ring forms when material collects near a resonance, set up by the pattern speed of a bar or bar-like perturbation. Our goal in this paper is to examine whether the ring star formation properties are related to the non-axisymmetric gravity potential in general. For this purpose, we obtained H{\alpha} emission line images and calculated the line fluxes and star formation rates (SFRs) for 16 nonbarred SA galaxies and four weakly barred SAB galaxies with rings. For comparison, we combine our observations with a re-analysis of previously published data on five SA, seven SAB, and 15 SB galaxies with rings, three of which are duplicates from our sample. With these data, we examine what role a bar may play in the star formation process in rings. Compared to barred ringed galaxies, we find that the inner ring SFRs and H{\alpha}+[N ii] equivalent widths in nonbarred ringed galaxies show a similar range and trend with absolute blue magnitude, revised Hubble type, and other parameters. On the whole, the star formation properties of inner rings, excluding the distribution of H ii regions, are independent of the ring shapes and the bar strength in our small samples. We confirm that the deprojected axis ratios of inner rings correlate with maximum relative gravitational force Q_g; however, if we consider all rings, a better correlation is found when local bar forcing at the radius of the ring, Q_r, is used. Individual cases are described and other correlations are discussed. By studying the physical properties of these galaxies, we hope to gain a better understanding of their placement in the scheme of the Hubble sequence and how they formed rings without the driving force of a bar.Comment: 55 pages; 21 figures and 9 tables. Article has been accepted for publication in the Astronomical Journa

    Tracing spiral density waves in M81

    Full text link
    We use SPITZER IRAC 3.6 and 4.5micron near infrared data from the Spitzer Infrared Nearby Galaxies Survey (SINGS), optical B, V and I and 2MASS Ks band data to produce mass surface density maps of M81. The IRAC 3.6 and 4.5micron data, whilst dominated by emission from old stellar populations, is corrected for small-scale contamination by young stars and PAH emission. The I band data are used to produce a mass surface density map by a B-V colour-correction, following the method of Bell and de Jong. We fit a bulge and exponential disc to each mass map, and subtract these components to reveal the non-axisymmetric mass surface density. From the residual mass maps we are able to extract the amplitude and phase of the density wave, using azimuthal profiles. The response of the gas is observed via dust emission in the 8micron IRAC band, allowing a comparison between the phase of the stellar density wave and gas shock. The relationship between this angular offset and radius suggests that the spiral structure is reasonably long lived and allows the position of corotation to be determined.Comment: 15 pages, 17 figures, accepted for publication in MNRA

    The Global Evolution of Giant Molecular Clouds II: The Role of Accretion

    Get PDF
    We present virial models for the global evolution of giant molecular clouds. Focusing on the presence of an accretion flow, and accounting for the amount of mass, momentum, and energy supplied by accretion and star formation feedback, we are able to follow the growth, evolution, and dispersal of individual giant molecular clouds. Our model clouds reproduce the scaling relations observed in both galactic and extragalactic clouds. We find that accretion and star formation contribute contribute roughly equal amounts of turbulent kinetic energy over the lifetime of the cloud. Clouds attain virial equilibrium and grow in such a way as to maintain roughly constant surface densities, with typical surface densities of order 50 - 200 Msun pc^-2, in good agreement with observations of giant molecular clouds in the Milky Way and nearby external galaxies. We find that as clouds grow, their velocity dispersion and radius must also increase, implying that the linewidth-size relation constitutes an age sequence. Lastly, we compare our models to observations of giant molecular clouds and associated young star clusters in the LMC and find good agreement between our model clouds and the observed relationship between H ii regions, young star clusters, and giant molecular clouds.Comment: 23 Pages, 9 Figures. Accepted to Ap

    Secrecy on Steroids: How Overzealous State Confidentiality Laws Expose Leakers and Whistleblowers to Retaliatory Prosecution

    Get PDF
    It is well-documented that the federal government has a secrecy problem. Thousands of times a year, inconsequential documents are needlessly stamped “classified,” which can mean prison for anyone who leaks them. But the addiction to secrecy doesn’t stop with the Pentagon. State public-records statutes are riddled with their own local version of “classified information” that puts people at risk of prosecution even for well-intentioned whistleblowing. The problem is particularly acute in Florida, where one of the state’s highest-ranking elected officials spent almost two years as the target of a criminal investigation for releasing records about an unresolved sexual harassment complaint against a state regulator. While the case was ultimately closed without charges, merely being the target of a prolonged criminal investigation can itself be profoundly intimidating—particularly for low-level public employees who lack the resources to defend themselves. This Article describes the results of a research project by the Brechner Center for Freedom of Information at the University of Florida, which found more than 400 categories of records that state law treats as “confidential,” meaning that a person who releases the record is potentially committing a crime. These categories go well beyond the narrow handful of sensitive documents that everyone agrees cannot safely be publicly disseminated, such as medical records, and encompass entirely mundane information, including the identities of donors to performing-arts venues, or the names of horses that are banned from racing. The needless proliferation of confidentiality laws creates an intimidating climate for whistleblowers. The fear of a retaliatory prosecution is no illusion: The authors examine a recent Texas case, Villarreal v. City of Laredo, in which a journalistic blogger was arrested and charged with violating a state confidentiality law analogous to Florida’s, demonstrating that overzealous use of “state classification” can empower government officials to make selective, viewpoint-based enforcement decisions. The authors conclude that confidential designation should be applied advisedly to only the narrowest subset of information that would genuinely cause harm if disclosed—and even then, only after the public\u27s countervailing interest in transparency is considered

    Observation of High-Energy Astrophysical Neutrinos in Three Years of IceCube Data

    Get PDF
    A search for high-energy neutrinos interacting within the IceCube detector between 2010 and 2012 provided the first evidence for a high-energy neutrino flux of extraterrestrial origin. Results from an analysis using the same methods with a third year (2012-2013) of data from the complete IceCube detector are consistent with the previously reported astrophysical flux in the 100 TeV - PeV range at the level of 108GeVcm2s1sr110^{-8}\, \mathrm{GeV}\, \mathrm{cm}^{-2}\, \mathrm{s}^{-1}\, \mathrm{sr}^{-1} per flavor and reject a purely atmospheric explanation for the combined 3-year data at 5.7σ5.7 \sigma. The data are consistent with expectations for equal fluxes of all three neutrino flavors and with isotropic arrival directions, suggesting either numerous or spatially extended sources. The three-year dataset, with a livetime of 988 days, contains a total of 37 neutrino candidate events with deposited energies ranging from 30 to 2000 TeV. The 2000 TeV event is the highest-energy neutrino interaction ever observed.Comment: 8 pages, 5 figures. Accepted by PRL. The event catalog, event displays, and other data tables are included after the final page of the article. Changed from the initial submission to reflect referee comments, expanding the section on atmospheric backgrounds, and fixes offsets of up to 0.9 seconds in reported event times. Address correspondence to: J. Feintzeig, C. Kopper, N. Whitehor

    Search for Prompt Neutrino Emission from Gamma-Ray Bursts with IceCube

    Get PDF
    We present constraints derived from a search of four years of IceCube data for a prompt neutrino flux from gamma-ray bursts (GRBs). A single low-significance neutrino, compatible with the atmospheric neutrino background, was found in coincidence with one of the 506 observed bursts. Although GRBs have been proposed as candidate sources for ultra-high energy cosmic rays, our limits on the neutrino flux disfavor much of the parameter space for the latest models. We also find that no more than 1%\sim1\% of the recently observed astrophysical neutrino flux consists of prompt emission from GRBs that are potentially observable by existing satellites.Comment: 15 pages, 3 figure

    Atmospheric and Astrophysical Neutrinos above 1 TeV Interacting in IceCube

    Get PDF
    The IceCube Neutrino Observatory was designed primarily to search for high-energy (TeV--PeV) neutrinos produced in distant astrophysical objects. A search for 100\gtrsim 100~TeV neutrinos interacting inside the instrumented volume has recently provided evidence for an isotropic flux of such neutrinos. At lower energies, IceCube collects large numbers of neutrinos from the weak decays of mesons in cosmic-ray air showers. Here we present the results of a search for neutrino interactions inside IceCube's instrumented volume between 1~TeV and 1~PeV in 641 days of data taken from 2010--2012, lowering the energy threshold for neutrinos from the southern sky below 10 TeV for the first time, far below the threshold of the previous high-energy analysis. Astrophysical neutrinos remain the dominant component in the southern sky down to 10 TeV. From these data we derive new constraints on the diffuse astrophysical neutrino spectrum, Φν=2.060.3+0.4×1018(Eν/105GeV)2.46±0.12GeV1cm2sr1s1\Phi_{\nu} = 2.06^{+0.4}_{-0.3} \times 10^{-18} \left({E_{\nu}}/{10^5 \,\, \rm{GeV}} \right)^{-2.46 \pm 0.12} {\rm {GeV^{-1} \, cm^{-2} \, sr^{-1} \, s^{-1}} } , as well as the strongest upper limit yet on the flux of neutrinos from charmed-meson decay in the atmosphere, 1.52 times the benchmark theoretical prediction used in previous IceCube results at 90\% confidence.Comment: 18 pages, 12 figure

    Search for a diffuse flux of astrophysical muon neutrinos with the IceCube 59-string configuration

    Get PDF
    A search for high-energy neutrinos was performed using data collected by the IceCube Neutrino Observatory from May 2009 to May 2010, when the array was running in its 59-string configuration. The data sample was optimized to contain muon neutrino induced events with a background contamination of atmospheric muons of less than 1%. These data, which are dominated by atmospheric neutrinos, are analyzed with a global likelihood fit to search for possible contributions of prompt atmospheric and astrophysical neutrinos, neither of which have yet been identified. Such signals are expected to follow a harder energy spectrum than conventional atmospheric neutrinos. In addition, the zenith angle distribution differs for astrophysical and atmospheric signals. A global fit of the reconstructed energies and directions of observed events is performed, including possible neutrino flux contributions for an astrophysical signal and atmospheric backgrounds as well as systematic uncertainties of the experiment and theoretical predictions. The best fit yields an astrophysical signal flux for nu(mu) + (nu) over bar (mu) of E-2. Phi(E) = 0.25 x 10(-8) GeV cm(-2) s(-1) sr(-1), and a zero prompt component. Although the sensitivity of this analysis for astrophysical neutrinos surpasses the Waxman and Bahcall upper bound, the experimental limit at 90% confidence level is a factor of 1.5 above at a flux of E-2 . Phi(E) = 1.44 x 10(-8) GeV cm(-2) s(-1) sr(-1)

    The M81 Group Dwarf Irregular Galaxy DDO 165. I. High Velocity Neutral Gas in a Post-Starburst System

    Full text link
    We present new multi-configuration VLA HI spectral line observations of the M81 group dIrr post-starburst galaxy DDO 165. The HI morphology is complex, with multiple column density peaks surrounding a large region of very low HI surface density that is offset from the center of the stellar distribution. The bulk of the neutral gas is associated with the southern section of the galaxy; a secondary peak in the north contains ~15% of the total HI mass. These components appear to be kinematically distinct, suggesting that either tidal processes or large-scale blowout have recently shaped the ISM of DDO 165. Using spatially-resolved position-velocity maps, we find multiple localized high-velocity gas features. Cross-correlating with radius-velocity analyses, we identify eight shell/hole structures in the ISM with a range of sizes (~400-900 pc) and expansion velocities (~7-11 km/s). These structures are compared with narrow- and broad-band imaging from KPNO and HST. Using the latter data, recent works have shown that DDO 165's previous "burst" phase was extended temporally (>1 Gyr). We thus interpret the high-velocity gas features, HI holes, and kinematically distinct components of the galaxy in the context of the immediate effects of "feedback" from recent star formation. In addition to creating HI holes and shells, extended star formation events are capable of creating localized high velocity motion of the surrounding interstellar material. A companion paper connects the energetics from the HI and HST data.Comment: The Astrophysical Journal, in press. Full-resolution version available on request from the first autho
    corecore