706 research outputs found

    Magnetic Reversal Time in Open Long Range Systems

    Full text link
    Topological phase space disconnection has been recently found to be a general phenomenon in isolated anisotropic spin systems. It sets a general framework to understand the emergence of ferromagnetism in finite magnetic systems starting from microscopic models without phenomenological on-site barriers. Here we study its relevance for finite systems with long range interacting potential in contact with a thermal bath. We show that, even in this case, the induced magnetic reversal time is exponentially large in the number of spins, thus determining {\it stable} (to any experimental observation time) ferromagnetic behavior. Moreover, the explicit temperature dependence of the magnetic reversal time obtained from the microcanonical results, is found to be in good agreement with numerical simulations. Also, a simple and suggestive expression, indicating the Topological Energy Threshold at which the disconnection occurs, as a real energy barrier for many body systems, is obtained analytically for low temperature

    A New Determination of the High Redshift Type Ia Supernova Rates with the Hubble Space Telescope Advanced Camera for Surveys

    Get PDF
    We present a new measurement of the volumetric rate of Type Ia supernova up to a redshift of 1.7, using the Hubble Space Telescope (HST) GOODS data combined with an additional HST dataset covering the North GOODS field collected in 2004. We employ a novel technique that does not require spectroscopic data for identifying Type Ia supernovae (although spectroscopic measurements of redshifts are used for over half the sample); instead we employ a Bayesian approach using only photometric data to calculate the probability that an object is a Type Ia supernova. This Bayesian technique can easily be modified to incorporate improved priors on supernova properties, and it is well-suited for future high-statistics supernovae searches in which spectroscopic follow up of all candidates will be impractical. Here, the method is validated on both ground- and space-based supernova data having some spectroscopic follow up. We combine our volumetric rate measurements with low redshift supernova data, and fit to a number of possible models for the evolution of the Type Ia supernova rate as a function of redshift. The data do not distinguish between a flat rate at redshift > 0.5 and a previously proposed model, in which the Type Ia rate peaks at redshift >1 due to a significant delay from star-formation to the supernova explosion. Except for the highest redshifts, where the signal to noise ratio is generally too low to apply this technique, this approach yields smaller or comparable uncertainties than previous work.Comment: Accepted for publication in Ap

    A Calibration of NICMOS Camera 2 for Low Count-Rates

    Full text link
    NICMOS 2 observations are crucial for constraining distances to most of the existing sample of z > 1 SNe Ia. Unlike the conventional calibration programs, these observations involve long exposure times and low count rates. Reciprocity failure is known to exist in HgCdTe devices and a correction for this effect has already been implemented for high and medium count-rates. However observations at faint count-rates rely on extrapolations. Here instead, we provide a new zeropoint calibration directly applicable to faint sources. This is obtained via inter-calibration of NIC2 F110W/F160W with WFC3 in the low count-rate regime using z ~ 1 elliptical galaxies as tertiary calibrators. These objects have relatively simple near-IR SEDs, uniform colors, and their extended nature gives superior signal-to-noise at the same count rate than would stars. The use of extended objects also allows greater tolerances on PSF profiles. We find ST magnitude zeropoints (after the installation of the NICMOS cooling system, NCS) of 25.296 +- 0.022 for F110W and 25.803 +- 0.023 for F160W, both in agreement with the calibration extrapolated from count-rates 1,000 times larger (25.262 and 25.799). Before the installation of the NCS, we find 24.843 +- 0.025 for F110W and 25.498 +- 0.021 for F160W, also in agreement with the high-count-rate calibration (24.815 and 25.470). We also check the standard bandpasses of WFC3 and NICMOS 2 using a range of stars and galaxies at different colors and find mild tension for WFC3, limiting the accuracy of the zeropoints. To avoid human bias, our cross-calibration was "blinded" in that the fitted zeropoint differences were hidden until the analysis was finalized.Comment: Accepted for Publication in the Astronomical Journal. New version contains added referenc

    The Hubble Space Telescope Cluster Supernova Survey: VI. The Volumetric Type Ia Supernova Rate

    Full text link
    We present a measurement of the volumetric Type Ia supernova (SN Ia) rate out to z ~ 1.6 from the Hubble Space Telescope Cluster Supernova Survey. In observations spanning 189 orbits with the Advanced Camera for Surveys we discovered 29 SNe, of which approximately 20 are SNe Ia. Twelve of these SNe Ia are located in the foregrounds and backgrounds of the clusters targeted in the survey. Using these new data, we derive the volumetric SN Ia rate in four broad redshift bins, finding results consistent with previous measurements at z > 1 and strengthening the case for a SN Ia rate that is equal to or greater than ~0.6 x 10^-4/yr/Mpc^3 at z ~ 1 and flattening out at higher redshift. We provide SN candidates and efficiency calculations in a form that makes it easy to rebin and combine these results with other measurements for increased statistics. Finally, we compare the assumptions about host-galaxy dust extinction used in different high-redshift rate measurements, finding that different assumptions may induce significant systematic differences between measurements.Comment: 11 pages, 7 figures. Submitted to the Astrophysical Journal. Revised version following referee comments. See the HST Cluster SN Survey website at http://supernova.lbl.gov/2009ClusterSurvey for control time simulations in a machine-readable table and a complete listing of transient candidates from the surve

    Scaling Relations and Overabundance of Massive Clusters at z>~1 from Weak-Lensing Studies with HST

    Get PDF
    We present weak gravitational lensing analysis of 22 high-redshift (z >~1) clusters based on Hubble Space Telescope images. Most clusters in our sample provide significant lensing signals and are well detected in their reconstructed two-dimensional mass maps. Combining the current results and our previous weak-lensing studies of five other high-z clusters, we compare gravitational lensing masses of these clusters with other observables. We revisit the question whether the presence of the most massive clusters in our sample is in tension with the current LambdaCDM structure formation paradigm. We find that the lensing masses are tightly correlated with the gas temperatures and establish, for the first time, the lensing mass-temperature relation at z >~ 1. For the power law slope of the M-TX relation (M propto T^{\alpha}), we obtain \alpha=1.54 +/- 0.23. This is consistent with the theoretical self-similar prediction \alpha=3/2 and with the results previously reported in the literature for much lower redshift samples. However, our normalization is lower than the previous results by 20-30%, indicating that the normalization in the M-TX relation might evolve. After correcting for Eddington bias and updating the discovery area with a more conservative choice, we find that the existence of the most massive clusters in our sample still provides a tension with the current Lambda CDM model. The combined probability of finding the four most massive clusters in this sample after marginalization over current cosmological parameters is less than 1%.Comment: ApJ in press. See http://www.supernova.lbl.gov for additional information pertaining to the HST Cluster SN Surve

    Rest-Frame R-band Lightcurve of a z~1.3 Supernova Obtained with Keck Laser Adaptive Optics

    Get PDF
    We present Keck diffraction limited H-band photometry of a z~1.3 Type Ia supernova (SN) candidate, first identified in a Hubble Space Telescope (HST) search for SNe in massive high redshift galaxy clusters. The adaptive optics (AO) data were obtained with the Laser Guide Star facility during four observing runs from September to November 2005. In the analysis of data from the observing run nearest to maximum SN brightness, the SN was found to have a magnitude H=23.9 +/- 0.14 (Vega). We present the H-band (approximately rest-frame R) light curve and provide a detailed analysis of the AO photometric uncertainties. By constraining the aperture correction with a nearby (4" separation) star we achieve 0.14 magnitude photometric precision, despite the spatially varying AO PSF.Comment: 11 pages, 8 figures, Accepted for Publication in AJ Updated the citations, fixed typo

    Exclusion limits on the WIMP-nucleon cross-section from the Cryogenic Dark Matter Search

    Get PDF
    The Cryogenic Dark Matter Search (CDMS) employs low-temperature Ge and Si detectors to search for Weakly Interacting Massive Particles (WIMPs) via their elastic-scattering interactions with nuclei while discriminating against interactions of background particles. For recoil energies above 10 keV, events due to background photons are rejected with >99.9% efficiency, and surface events are rejected with >95% efficiency. The estimate of the background due to neutrons is based primarily on the observation of multiple-scatter events that should all be neutrons. Data selection is determined primarily by examining calibration data and vetoed events. Resulting efficiencies should be accurate to about 10%. Results of CDMS data from 1998 and 1999 with a relaxed fiducial-volume cut (resulting in 15.8 kg-days exposure on Ge) are consistent with an earlier analysis with a more restrictive fiducial-volume cut. Twenty-three WIMP candidate events are observed, but these events are consistent with a background from neutrons in all ways tested. Resulting limits on the spin-independent WIMP-nucleon elastic-scattering cross-section exclude unexplored parameter space for WIMPs with masses between 10-70 GeV c^{-2}. These limits border, but do not exclude, parameter space allowed by supersymmetry models and accelerator constraints. Results are compatible with some regions reported as allowed at 3-sigma by the annual-modulation measurement of the DAMA collaboration. However, under the assumptions of standard WIMP interactions and a standard halo, the results are incompatible with the DAMA most likely value at >99.9% CL, and are incompatible with the model-independent annual-modulation signal of DAMA at 99.99% CL in the asymptotic limit.Comment: 40 pages, 49 figures (4 in color), submitted to Phys. Rev. D; v.2:clarified conclusions, added content and references based on referee's and readers' comments; v.3: clarified introductory sections, added figure based on referee's comment

    New Results from the Cryogenic Dark Matter Search Experiment

    Full text link
    Using improved Ge and Si detectors, better neutron shielding, and increased counting time, the Cryogenic Dark Matter Search (CDMS) experiment has obtained stricter limits on the cross section of weakly interacting massive particles (WIMPs) elastically scattering from nuclei. Increased discrimination against electromagnetic backgrounds and reduction of neutron flux confirm WIMP-candidate events previously detected by CDMS were consistent with neutrons and give limits on spin-independent WIMP interactions which are >2X lower than previous CDMS results for high WIMP mass, and which exclude new parameter space for WIMPs with mass between 8-20 GeV/c^2.Comment: 4 pages, 4 figure

    Supernova / Acceleration Probe: A Satellite Experiment to Study the Nature of the Dark Energy

    Full text link
    The Supernova / Acceleration Probe (SNAP) is a proposed space-based experiment designed to study the dark energy and alternative explanations of the acceleration of the Universe's expansion by performing a series of complementary systematics-controlled measurements. We describe a self-consistent reference mission design for building a Type Ia supernova Hubble diagram and for performing a wide-area weak gravitational lensing study. A 2-m wide-field telescope feeds a focal plane consisting of a 0.7 square-degree imager tiled with equal areas of optical CCDs and near infrared sensors, and a high-efficiency low-resolution integral field spectrograph. The SNAP mission will obtain high-signal-to-noise calibrated light-curves and spectra for several thousand supernovae at redshifts between z=0.1 and 1.7. A wide-field survey covering one thousand square degrees resolves ~100 galaxies per square arcminute. If we assume we live in a cosmological-constant-dominated Universe, the matter density, dark energy density, and flatness of space can all be measured with SNAP supernova and weak-lensing measurements to a systematics-limited accuracy of 1%. For a flat universe, the density-to-pressure ratio of dark energy can be similarly measured to 5% for the present value w0 and ~0.1 for the time variation w'. The large survey area, depth, spatial resolution, time-sampling, and nine-band optical to NIR photometry will support additional independent and/or complementary dark-energy measurement approaches as well as a broad range of auxiliary science programs. (Abridged)Comment: 40 pages, 18 figures, submitted to PASP, http://snap.lbl.go

    The Hubble Space Telescope Cluster Supernova Survey: V. Improving the Dark Energy Constraints Above z>1 and Building an Early-Type-Hosted Supernova Sample

    Get PDF
    We present ACS, NICMOS, and Keck AO-assisted photometry of 20 Type Ia supernovae SNe Ia from the HST Cluster Supernova Survey. The SNe Ia were discovered over the redshift interval 0.623 < z < 1.415. Fourteen of these SNe Ia pass our strict selection cuts and are used in combination with the world's sample of SNe Ia to derive the best current constraints on dark energy. Ten of our new SNe Ia are beyond redshift z=1z=1, thereby nearly doubling the statistical weight of HST-discovered SNe Ia beyond this redshift. Our detailed analysis corrects for the recently identified correlation between SN Ia luminosity and host galaxy mass and corrects the NICMOS zeropoint at the count rates appropriate for very distant SNe Ia. Adding these supernovae improves the best combined constraint on the dark energy density \rho_{DE}(z) at redshifts 1.0 < z < 1.6 by 18% (including systematic errors). For a LambdaCDM universe, we find \Omega_\Lambda = 0.724 +0.015/-0.016 (68% CL including systematic errors). For a flat wCDM model, we measure a constant dark energy equation-of-state parameter w = -0.985 +0.071/-0.077 (68% CL). Curvature is constrained to ~0.7% in the owCDM model and to ~2% in a model in which dark energy is allowed to vary with parameters w_0 and w_a. Tightening further the constraints on the time evolution of dark energy will require several improvements, including high-quality multi-passband photometry of a sample of several dozen z>1 SNe Ia. We describe how such a sample could be efficiently obtained by targeting cluster fields with WFC3 on HST.Comment: 27 pages, 11 figures. Submitted to ApJ. This first posting includes updates in response to comments from the referee. See http://www.supernova.lbl.gov for other papers in the series pertaining to the HST Cluster SN Survey. The updated supernova Union2.1 compilation of 580 SNe is available at http://supernova.lbl.gov/Unio
    corecore