491 research outputs found

    Constraining the False Positive Rate for Kepler Planet Candidates with Multi-Color Photometry from the GTC

    Full text link
    Using the OSIRIS instrument installed on the 10.4-m Gran Telescopio Canarias (GTC) we acquired multi-color transit photometry of four small (Rp < 5 R_Earth) short-period (P < 6 days) planet candidates recently identified by the Kepler space mission. These observations are part of a program to constrain the false positive rate for small, short-period Kepler planet candidates. Since planetary transits should be largely achromatic when observed at different wavelengths (excluding the small color changes due to stellar limb darkening), we use the observed transit color to identify candidates as either false positives (e.g., a blend with a stellar eclipsing binary either in the background/foreground or bound to the target star) or validated planets. Our results include the identification of KOI 225.01 and KOI 1187.01 as false positives and the tentative validation of KOI 420.01 and KOI 526.01 as planets. The probability of identifying two false positives out of a sample of four targets is less than 1%, assuming an overall false positive rate for Kepler planet candidates of 10% (as estimated by Morton & Johnson 2011). Therefore, these results suggest a higher false positive rate for the small, short-period Kepler planet candidates than has been theoretically predicted by other studies which consider the Kepler planet candidate sample as a whole. Furthermore, our results are consistent with a recent Doppler study of short-period giant Kepler planet candidates (Santerne et al. 2012). We also investigate how the false positive rate for our sample varies with different planetary and stellar properties. Our results suggest that the false positive rate varies significantly with orbital period and is largest at the shortest orbital periods (P < 3 days), where there is a corresponding rise in the number of detached eclipsing binary stars... (truncated)Comment: 13 pages, 12 figures, 3 tables; revised for MNRA

    A transiting companion to the eclipsing binary KIC002856960

    Full text link
    We present an early result from an automated search of Kepler eclipsing binary systems for circumbinary companions. An intriguing tertiary signal has been discovered in the short period eclipsing binary KIC002856960. This third body leads to transit-like features in the light curve occurring every 204.2 days, while the two other components of the system display eclipses on a 6.2 hour period. The variations due to the tertiary body last for a duration of \sim1.26 days, or 4.9 binary orbital periods. During each crossing of the binary orbit with the tertiary body, multiple individual transits are observed as the close binary stars repeatedly move in and out of alignment with the tertiary object. We are at this stage unable to distinguish between a planetary companion to a close eclipsing binary, or a hierarchical triply eclipsing system of three stars. Both possibilities are explored, and the light curves presented.Comment: Accepted into A&A Letters (5 pages & 3 figures

    A Search for Hierarchical Triples using Kepler Eclipse Timing

    Full text link
    We present the first results of a Kepler survey of 41 eclipsing binaries that we undertook to search for third star companions. Such tertiaries will periodically alter the eclipse timings through light travel time and dynamical effects. We discuss the prevalence of starspots and pulsation among these binaries and how these phenomena influence the eclipse times. There is no evidence of short period companions (P < 700 d) among this sample, but we do find evidence for long term timing variations in 14 targets (34%). We argue that this finding is consistent with the presence of tertiary companions among a significant fraction of the targets, especially if many have orbits measured in decades. This result supports the idea that the formation of close binaries involves the deposition of angular momentum into the orbital motion of a third star.Comment: AJ, in press, 104 pages, 2 figure sets plus 1 regular figur

    Two Earth-sized planets orbiting Kepler-20

    Get PDF
    Since the discovery of the first extrasolar giant planets around Sun-like stars, evolving observational capabilities have brought us closer to the detection of true Earth analogues. The size of an exoplanet can be determined when it periodically passes in front of (transits) its parent star, causing a decrease in starlight proportional to its radius. The smallest exoplanet hitherto discovered has a radius 1.42 times that of the Earth's radius (R Earth), and hence has 2.9 times its volume. Here we report the discovery of two planets, one Earth-sized (1.03R Earth) and the other smaller than the Earth (0.87R Earth), orbiting the star Kepler-20, which is already known to host three other, larger, transiting planets. The gravitational pull of the new planets on the parent star is too small to measure with current instrumentation. We apply a statistical method to show that the likelihood of the planetary interpretation of the transit signals is more than three orders of magnitude larger than that of the alternative hypothesis that the signals result from an eclipsing binary star. Theoretical considerations imply that these planets are rocky, with a composition of iron and silicate. The outer planet could have developed a thick water vapour atmosphere.Comment: Letter to Nature; Received 8 November; accepted 13 December 2011; Published online 20 December 201

    Kepler eclipsing binary stars. VII. the catalogue of eclipsing binaries found in the entire Kepler data set

    Get PDF
    The primary Kepler Mission provided nearly continuous monitoring of ~200,000 objects with unprecedented photometric precision. We present the final catalog of eclipsing binary systems within the 105 deg2 Kepler field of view. This release incorporates the full extent of the data from the primary mission (Q0-Q17 Data Release). As a result, new systems have been added, additional false positives have been removed, ephemerides and principal parameters have been recomputed, classifications have been revised to rely on analytical models, and eclipse timing variations have been computed for each system. We identify several classes of systems including those that exhibit tertiary eclipse events, systems that show clear evidence of additional bodies, heartbeat systems, systems with changing eclipse depths, and systems exhibiting only one eclipse event over the duration of the mission. We have updated the period and galactic latitude distribution diagrams and included a catalog completeness evaluation. The total number of identified eclipsing and ellipsoidal binary systems in the Kepler field of view has increased to 2878, 1.3% of all observed Kepler targets

    Planetary Candidates Observed by Kepler, III: Analysis of the First 16 Months of Data

    Get PDF
    New transiting planet candidates are identified in sixteen months (May 2009 - September 2010) of data from the Kepler spacecraft. Nearly five thousand periodic transit-like signals are vetted against astrophysical and instrumental false positives yielding 1,091 viable new planet candidates, bringing the total count up to over 2,300. Improved vetting metrics are employed, contributing to higher catalog reliability. Most notable is the noise-weighted robust averaging of multi-quarter photo-center offsets derived from difference image analysis which identifies likely background eclipsing binaries. Twenty-two months of photometry are used for the purpose of characterizing each of the new candidates. Ephemerides (transit epoch, T_0, and orbital period, P) are tabulated as well as the products of light curve modeling: reduced radius (Rp/R*), reduced semi-major axis (d/R*), and impact parameter (b). The largest fractional increases are seen for the smallest planet candidates (197% for candidates smaller than 2Re compared to 52% for candidates larger than 2Re) and those at longer orbital periods (123% for candidates outside of 50-day orbits versus 85% for candidates inside of 50-day orbits). The gains are larger than expected from increasing the observing window from thirteen months (Quarter 1-- Quarter 5) to sixteen months (Quarter 1 -- Quarter 6). This demonstrates the benefit of continued development of pipeline analysis software. The fraction of all host stars with multiple candidates has grown from 17% to 20%, and the paucity of short-period giant planets in multiple systems is still evident. The progression toward smaller planets at longer orbital periods with each new catalog release suggests that Earth-size planets in the Habitable Zone are forthcoming if, indeed, such planets are abundant.Comment: Submitted to ApJS. Machine-readable tables are available at http://kepler.nasa.gov, http://archive.stsci.edu/kepler/results.html, and the NASA Exoplanet Archiv

    RADIAL VELOCITY MONITORING OFKEPLERHEARTBEAT STARS

    Get PDF
    Heartbeat stars (HB stars) are a class of eccentric binary stars with close periastron passages. The characteristic photometric HB signal evident in their light curves is produced by a combination of tidal distortion, heating, and Doppler boosting near orbital periastron. Many HB stars continue to oscillate after periastron and along the entire orbit, indicative of the tidal excitation of oscillation modes within one or both stars. These systems are among the most eccentric binaries known, and they constitute astrophysical laboratories for the study of tidal effects. We have undertaken a radial velocity (RV) monitoring campaign of Kepler HB stars in order to measure their orbits. We present our first results here, including a sample of 22 Kepler HB systems, where for 19 of them we obtained the Keplerian orbit and for 3 other systems we did not detect a statistically significant RV variability. Results presented here are based on 218 spectra obtained with the Keck/HIRES spectrograph during the 2015 Kepler observing season, and they have allowed us to obtain the largest sample of HB stars with orbits measured using a single instrument, which roughly doubles the number of HB stars with an RV measured orbit. The 19 systems measured here have orbital periods from 7 to 90 days and eccentricities from 0.2 to 0.9. We show that HB stars draw the upper envelope of the eccentricity–period distribution. Therefore, HB stars likely represent a population of stars currently undergoing high eccentricity migration via tidal orbital circularization, and they will allow for new tests of high eccentricity migration theories

    Kepler-16: A Transiting Circumbinary Planet

    Get PDF
    We report the detection of a planet whose orbit surrounds a pair of low-mass stars. Data from the Kepler spacecraft reveal transits of the planet across both stars, in addition to the mutual eclipses of the stars, giving precise constraints on the absolute dimensions of all three bodies. The planet is comparable to Saturn in mass and size, and is on a nearly circular 229-day orbit around its two parent stars. The eclipsing stars are 20% and 69% as massive as the sun, and have an eccentric 41-day orbit. The motions of all three bodies are confined to within 0.5 degree of a single plane, suggesting that the planet formed within a circumbinary disk.Comment: Science, in press; for supplemental material see http://www.sciencemag.org/content/suppl/2011/09/14/333.6049.1602.DC1/1210923.Doyle.SOM.pd

    Modeling of airblast propagation through an enclosed structure

    Get PDF
    The ability to model explosively formed shock waves propagating through a structure is of particular interest to engineers concerned with structural responses to blasts. Accurate peak pressure and impulse values are critical to understanding blast loads on structures and predicting the resulting structural behavior, but are sometimes difficult to determine analytically. Experiments are necessary to determine the true structural response, but the experiments alone may not identify all the details involved in an explosive event that may be important for design purposes. When tied to experiments, computational modeling of explosive events can be an invaluable tool for an engineer. The most difficult part of modeling structural response to a close-in explosive event is capturing the fluid-structure interaction of the resulting flow of the detonation products. In this paper, we compare the results of numerical simulations of an explosive experimental event in an enclosed structure, or “attic space”, using two different computational codes, CTH and DYSMAS. Both adequately model the explosive event in attic space when compared to the experiment. We also compare the two codes’ ability to produce explosive-induced pressure-time histories in the free field. The advantage of using a coupled code like DYSMAS is that structural response can be more accurately captured than by using a hydrocode like CTH alone. The differences between the two codes’ ability to model the event are analyzed and described as well as a general description of the shock wave propagation in the attic space

    KIC 8164262: a heartbeat star showing tidally induced pulsations with resonant locking

    Get PDF
    We present the analysis of KIC 8164262, a heartbeat star with a high-amplitude (∼1 mmag), tidally resonant pulsation (a mode in resonance with the orbit) at 229 times the orbital frequency and a plethora of tidally induced g-mode pulsations (modes excited by the orbit). The analysis combines Kepler light curves with follow-up spectroscopic data from the Keck telescope, KPNO (Kitt Peak National Observatory) 4-m Mayall telescope and the 2.7-m telescope at the McDonald observatory. We apply the binary modelling software, phoebe, to the Kepler light curve and radial velocity data to determine a detailed binary star model that includes the prominent pulsation and Doppler boosting, alongside the usual attributes of a binary star model (including tidal distortion and reflection). The results show that the system contains a slightly evolved F star with an M secondary companion in a highly eccentric orbit (e = 0.886). We use the results of the binary star model in a companion paper (Fuller) where we show that the prominent pulsation can be explained by a tidally excited oscillation mode held near resonance by a resonance locking mechanism
    corecore